
Master’s Thesis

Design of QoS-constrained Dataflows to Test
Store-and-forward Mechanisms in Tactical

Networks

Author:
Adrián Kevin Toribio Silva

University of Bonn, Institut für Informatik

Rheinische Friedrich-Wilhelms-Universität Bonn

Email: adrian.toribio.silva@alumnos.upm.es

Advisor:
Dr. Roberto Rigolin F. Lopes

Co-Advisors:
Dr. Paulo Henrique L. Rettore and Dr. Matthias Frank

Research Scientists, Fraunhofer FKIE, Bad Godesberg, Germany
Email: [roberto.lopes,paulo.lopes.rettore]@fkie.fraunhofer.de

November 8, 2020

Design of QoS-constrained Dataflows to Test Store-and-forward
Mechanisms in Tactical Networks

Adrián Kevin Toribio Silva

Abstract

Tactical networks, as the basis for military deployments, must deal with limita-
tions such as low bandwidth, high delay and frequent disruptions during commu-
nications. To ensure robust and secure transmissions that do not jeopardize the
loss of information, mechanisms such as store-and-forward implemented in tactical
systems or middlewares, among others, are used. These solutions make use of algo-
rithms that control the filling of radio buffers and the processing of packet queues
using cross-layer information exchange. In order to improve and test this type of
store-and-forward mechanisms it is required to make use of scenarios close to reality,
where both the flow of data generated by users and the conditions of the network
are changing. Our work focuses on designing QoS-constrained dataflows through
a tool to provide realistic situations that help test and improve tactical systems.
For this purpose, the term randomness is included, which is not present in many of
the works of literature that use artificial flows. The three experiments carried out
simulate different traffic on a VHF network with which to test the operation of the
tool, analyze the limits of TSI middleware performance and the impact that satu-
ration of a network has on the quality of communications. In the first one the effect
of sending a large message (1000 KB) is discussed and in the other two tests 1000
messages of 1 KB are sent in burst mode and with time-windows respectively. The
results are then compared in terms of the evolution of the radio buffer, IP packets
sent and received and Inter-Packet Interval (a concept introduced in [1]).

Keywords QoS-constrained dataflows, tactical networks, store-and-forward mech-
anism, ever-changing communication scenarios

Acknowledgements

Now that I close this stage I would like to dedicate a few lines to all the people who
have accompanied me.

First of all, I would like to thank Roberto for the opportunity to do this mas-
ter thesis. His dedication, support and ambition have undoubtedly marked the
development of this work. I would also like to thank the help received from the
team, especially from Pooja and Paulo, for guiding me in the right direction, pro-
viding ideas to keep moving forward and assisting me when I needed it. The good
atmosphere we have had during these months has made my work bearable and en-
tertaining.

I could not fail to mention Paula and Miguel, with whom I have shared, suffered
and lived each and every one of the experiences of this Erasmus. We finally did it!
I do not doubt that you will leave your mark wherever you work.

And last but not least, I would like to thank my family for all their affection and
attention. That in spite of the distance they were always by my side to know how
my progress was going. I love you.

Contents

1 Introduction 2
1.1 Motivation . 4
1.2 Goals . 5

1.2.1 Specific Goals . 5
1.3 Contributions . 6
1.4 Outline . 6

2 Literature Review 7
2.1 Fundamental concepts . 7

2.1.1 Command and Control (C2) 7
2.1.2 Consultation, Command and Control (C3) Taxonomy 7
2.1.3 Middleware . 9
2.1.4 Java Message Service vs Web service 9

2.2 Message Benchmarks . 11
2.3 Final remarks . 15

3 Tactical Middleware 16
3.1 Testbed in tactical networks . 16
3.2 Architecture of TACTICS . 17
3.3 Ever-changing datarates . 18
3.4 Ever-changing QoS-constrained dataflows 21
3.5 Final remarks . 22

4 Creating QoS-Constrained Dataflows 24
4.1 Methodology . 24

4.1.1 Resources . 25
4.2 Publish/Subscribe messaging . 25

4.2.1 Message size . 26
4.2.2 Message priority . 26
4.2.3 Message time-window . 26

4.3 The Message Benchmark Application 27
4.4 Final remarks . 34

5 Experiments and Results 36
5.1 Experiments definition . 36
5.2 Experimental Results . 37

5.2.1 Simulations: creating patterns of QoS-constrained dataflows . 42
5.3 Final remarks . 46

4

6 Conclusion 47

A Ethical, economic, social and environmental aspects 49
A.1 Introduction . 49
A.2 Description of relevant impacts related to the project 49
A.3 Detailed analysis of the main impacts 51
A.4 Conclusions . 51

B Economical budget 52
B.1 Cost of materials . 52
B.2 Professional fees . 52
B.3 Total costs . 53

C Scripts 54

Acronyms 57

List of Figures

1.1 The three problems: A, B and A|B [1] 3

2.1 Communication and Information System (CIS) Capabilities layer in
the C3 Taxonomy [2] . 8

2.2 Point to point and publish/subscribe messaging models 10

3.1 Testbed - abstract level: network topology and node types [1] 17
3.2 TSI queue hierarchy . 18
3.3 Sequence of datarates from D1, D2 and D3 19
3.4 Comparison between reactive/proactive solutions 20
3.5 Radio buffer (%) and Queue of packets (KB) 21
3.6 Testbed: physical network VHF . 23

4.1 Graphical User Interface of Message Benchmark tool 27
4.2 Unified Modeling Language (UML) activity diagram 29
4.3 Sequences of Messages . 30
4.4 Sequences of Messages using different seeds 31
4.5 Twenty queues with 20 messages from A1, A2 and A3 32
4.6 Generic Markov chain . 33
4.7 Time distributions . 33
4.8 UML class diagram for the Message Benchmark tool 35

5.1 Radio buffer over time . 38
5.2 Radio buffer density . 39
5.3 Internet Protocol (IP) packets sent and received 40
5.4 IP packets sent and received per second 40
5.5 IP packets sent and received over time 41
5.6 Internet-Packet-Interval (IPI) over time at both source and target . . 42
5.7 Sequence of messages following the priority patterns A1 43
5.8 Sequence of messages following the priority patterns A2 44
5.9 Sequence of messages following the priority patterns A3 44
5.10 Sequence of messages following the priority patterns based on Markov

Chain . 45
5.11 Sequence of messages following the priority patterns defined by mes-

sage probability . 45
5.12 Sequence of messages following the priority patterns defined by default 46

1

List of Tables

1.1 Message priority, frequency and time to expire 5

2.1 Comparison between Java Message Service (JMS) and Web services [3] 11
2.2 Benchmarks summary . 14

4.1 Specifications of the equipment composing the testbed 25

5.1 Set up for the three experiments . 37
5.2 Configuration of the stochastic models used to generate the plots . . 43

B.1 Costs of materials . 52
B.2 Professional fees . 52
B.3 Total costs . 53

Chapter 1

Introduction

Tactical networks are the base of military deployments, allowing the establishment
of communication between entities in tactical scenarios, such as people, vehicles,
base stations and others. The use of these means of communication is essential to
establish secure and reliable communications in emergency situations such as war-
fare, natural disasters or evacuations. In addition to provide capabilities to exchange
information (pictures, text, regular intervals, etc.) among military tactical forces,
it also enables the adoption of Command, Control, Communications, Computers,
Intelligence, Surveillance and Reconnaissance (C4ISR) applications [4].

These networks are complex environments that must treat confidential informa-
tion and events by handling the use of a diversity of nodes from static sensors to
servers mounted in mobile vehicles (drones, robots, etc.) and different communica-
tion technologies (e.g Very High Frequency (VHF), Ultra High Frequency (UHF) and
Satellite Communications (SatCom)). Therefore tactical networks differ from com-
mercial networks in their rate constraints, anti-jamming needs, mobility/dynamic
topology, low bandwidth, high latency and the adversary’s activity (e.g. jamming)
[5].

In a context where the user-behaviour and the network conditions are unpre-
dictable and have a changing nature, a tactical network can be divided into three
different problems as it is referred in our study and showed in Figure 1.1. Problem
A involves the user-behaviour where the military forces can use different Command
and Control (C2) services to exchange information. Here there is a wide variety of
information types (verbal, written or visual), ways to send it and Quality of Service
(QoS) parameters of the messages. Problem B deals with the effects of the network
constraints in data transmissions. Due to the coexistence of different technologies
with different specifications (bandwidth, reliability, datarate, etc.), possible natural
barriers (mountains, weather, forests, etc.) and nodes in movement the QoS may
be affected. Finally, problem A|B is located in the tactical system layer whose main
task is to connect the user layer with the communication layer, making its interven-
tion as a mediator opaque for both tiers and adapting the system to the changing
conditions.

The store-and-forward mechanisms are implemented in the tactical system (also
called tactical middleware) to deal with delays and disruptions. These techniques are
therefore responsible for preventing the loss of traffic packages in their transmission
and their role is especially important in emergency cases, where bottlenecks can
be expected. In this sense, they use algorithms that decide how and when to fill

2

B

Problem ACommand and Control Systems

Tactical Middleware

Tactical Networks

A

Problem B

Ever‐changing network conditions

Ever‐changing QoS‐constrained dataflows

Problem A|B

Figure 1.1: The three problems: A, B and A|B [1]

the radio buffers and how to treat queued packets using cross-layer information
exchange.

The North Atlantic Treaty Organization (NATO) alliance [6] is responsible to
guarantee the freedom and protect the stability of its affiliates through political and
military means, and they have an annual program called NATO Coalition Warrior
Interoperability eXploration, eXperimentation, eXamination, eXercise) (CWIX).
CWIX allows nations to experiment, test and reduce the risk of their systems before
undertaking missions [7]. One of the European Defence Agency on-going projects in
the field of tactical networks is called Tactical Service-Oriented Architecture (TAC-
TICS) [8, 9] and it aims to improve situation awareness in tactical environments.

Concerning the NATO CWIX program, the results of TACTICS’s have been
evolved over the last years using communication scenarios that resemble reality and
to stress the performance bounds of tactical systems. At this point one of the
existing research fields is the analysis and testing of tactical middlewares based in
web services combining military radios and the multinational interoperability tests
at Future Core Services (FCS) [10].

The present thesis is part of TACTICS and addresses the changing nature of user-
behaviour based on evolving the results of the following Lopes et al. works [1, 11, 10].
Imposed by the VHF radios constraints in coverage (∼ 20 km) and nominal datarate
(9.6 kbps) Lopes et al. [1] propose a hierarchical queueing mechanism to control and
monitor radio buffers while delivering web services in tactical networks. To deploy
QoS-constrained (e.g. priority, reliability and time of expiry) web services in this
type of network, several researchers [12, 13, 14, 15, 16, 17, 18, 19] suggest the use of
middlewares following the NATO’s C3 taxonomy [2]. The middleware used in the
experiments reported in this thesis is called Tactical Service-Oriented Infrastructure
(TSI), it uses User Datagram Protocol (UDP) transport protocol and it controls the
data flow by monitoring the radio buffer. The core services are mainly based on two
different queues (message queue Qm and packet queue Qp), a QoS handler and a
control loop relying on the cross-layer information exchange between the two queues
and the radio buffer.

Considering the aforementioned literature our investigation focuses on Problem
A as shown in Figure 1.1, aiming to create a framework (tool) to simulate the
user’s behavior at a particular mission in order to evaluate the store-and-forward

3

mechanisms in tactical networks. This can help other researchers to analyze the
efficiency of their systems stressing the performance bounds of them by incrementally
generating more challenging QoS-constrained dataflows.

1.1 Motivation

The 2005 NATO Network Enabled Capability Feasibility Study (NNEC FS) issued
two important recommendations related to the interactions implied in military op-
erations [20]. As a consequence, a Service Oriented Architecture (SOA) based on
web service standard was suggested. Lund et al. [21] raised the issue of implement-
ing the information infrastructure as SOA by using the IP network protocol. SOA
enables to provide and use applications/resources as services, allowing rapid appli-
cation integration, multi channel access to applications and dynamic information
sharing [22]. In Network Enabled Capabilities (NEC) the major defiance is to es-
tablish an exchange-information channel among military units that can operate over
disadvantaged grids (with frequent disconnections, low data rate and high delay).
Web services are based on Extensible Markup Language (XML) standards and Sim-
ple Object Access Protocol (SOAP) and they have an ample amount of information
overhead, consequently, they are not very efficient in disadvantage grids. Therefore
the authors suggested some techniques and mechanisms that contribute to the use
of web services in disadvantaged grids: (1) GZIP and binary XML as compression
methods, (2) the use of S4406 instead of Hypertext Transfer Protocol (HTTP) as
transport for SOAP messages, (3) adding proxies to the system or (4) optimization
of message representation and content.

The use of web services allows offering applications as services in a rapid easy
way to integrate for example obstacle or positioning alerts. The middleware acts as
an intermediary between web services and tactical networks, handling ever-changing
communication scenarios. Adapting web services to tactical networks means dealing
with challenges that vary from the mobility of the nodes to degraded conditions of the
communications [4]. Due to the lack of network infrastructure support, the adver-
sary’s actions, frequent interference and disruption, high latency and low datarates
the design choices become complicated. These limitations have revealed three great
needs in the development of effective middlewares and applications: (1) the inclu-
sion of randomness in the user behaviour (differing QoS-constrained dataflows), (2)
network conditions (varying among different network states) and (3) how to manage
the user data-flow given the current network circumstances.

Creating a close to real communication scenario where the user behaviour and
network states varying independently over time can contributes to improving the
deployment in dynamic and resource constrained environments. Furthermore, in
simulation scenarios, the precision/overhead relationship in the network must be
balanced and difficulties can be found with security policies when controlling traffic
and characterizing the information. However, the experiments carried out in the
literature suggest solutions tested with specific user behaviors and limited messages,
which lacks the element of surprise (randomness). This indicates that the efficiency
of the system is not tested against a real dynamic nature of user behavior (e.g.
varying QoS-constrained data-flows) suggesting a significant gap between reality
and test-bed scenarios, particularly in worst case scenarios.

Therefore, the purpose of our research is to fill this gap addressing the Problem

4

A previously defined in [11] as following. Considering the fact that mobile nodes in
a tactical network are hosting C2 systems where the users are exchanging messages,
it coexists messages with different QoS parameters like priority, reliability and Time
of Expire (ToE). Thus a realistic combination of these diverse messages must be
part of a close to real emulation. The preceding work of Lopes et al. uses Table 1.1
to list five user services sorted by their priorities: Flash 0, Immediate 1, Priority
2 and Routine 3. The predefined message frequency λ is unknown for most of the
services as they are stochastic and unpredictable. However, there may be predictable
services such as Friendly Force Tracking (FFT), which sends messages with a specific
frequency f.

Service λ Priority Reliability ToE (sec)

s1 Medical evacuation ? 0 Flash Yes 300
s2 Obstacle alert ? 1 Immediate Yes 150
s3 Picture ? 2 Priority Yes 3600
s4 FFT f 3 Routine No 120
s5 Text ? 0,1,2,3 Yes/No ?

Table 1.1: Message priority, frequency and time to expire

Thus, the research question is: How to create an ever-changing message’ behav-
ior in order to challenge an entire communication system?. Our hypothesis is that
”Varying the message in four different variables such as number, size, time, and pri-
ority we are able to simulate the changing nature of user-behavior, and consequently,
stressing any communication network.”. In this sense, we focus on include the el-
ements of chance (randomness) and create a wide range of message combinations
including the best/worst case scenarios within extreme communication scenarios.
Therefore, as QoS-constraints demanded, we suggest randomness in the priorities
of the traffic sent and variety in the same in terms of size as well in content and
frequency of sending. For this purpose, stochastic models are implemented in our
tool to create QoS constrained dataflows as it is explained in the following chapters
of this thesis.

1.2 Goals

Focusing on the Problem A defined in [11], this thesis proposes the implementation
of an application to create a sequence of QoS-constrained messages and test a store-
and-forward mechanisms in tactical networks. In such a way that the performance
and limit bounds of the system (particularly the store-and-forward mechanism) or
any other can be defined in a pragmatic way using quantitative results.

1.2.1 Specific Goals

As the development of the main objective, this study is divided into the following
specific goals:

• Conduct a study of the state of the art in the analysis of communication
scenarios in tactical networks: through an exhaustive literature review that
allows establishing a work plan and thus develop the experiments to generate
possible new contributions to the scientific community.

5

• Given the services in Table 1.1, implement a methodology to create sequences
of QoS-constrained messages. These sequences of messages have to vary in
four different variables such as number, size, time, and priority.

• Design the experiment with and without (baseline for quantitative compar-
isons) using a tactical middleware.

• Analyze the results through a statistical and mathematical treatment, dis-
cussing them and proposing future directions.

1.3 Contributions

During this thesis, the following publication has been presented:

• R. R. F. Lopes, P. H. Balaraju, A. T. Silva, P. H. Rettore, and P. Sevenich,
“Experiments with a queuing mechanism over ever-changing datarates in a
VHF network,” in IEEE Military Communications Conference (MILCOM),
(Norfolk VA, USA), November 2019

1.4 Outline

The rest of this thesis is organized as follows. In Chapter 2, we analyze the literature
review related to communication scenarios in tactical networks. Chapter 3, the
TACTICS project is described and the problems related to it are defined. Chapter
4 shows the benchmark solution and Chapter 5 the results and experiments are
discussed. Finally, Chapter 6 concludes the thesis and discuss future works.

6

Chapter 2

Literature Review

This chapter discusses fundamental concepts supporting the development of tac-
tical systems and related investigations that address solutions to simulate QoS-
constrained dataflows to test networks. This chapter is organized as follows. First,
main concepts in the field of tactical networks are explained. Second, two of the
most used message technologies in data transmission are described. Finally, diverse
tools developed to test different types of network that can be found in the literature
are exposed and compared.

2.1 Fundamental concepts

2.1.1 Command and Control (C2)

Command and Control (C2) is a set of technical, directional and executive processes
and attributes employed by an organization to accomplish missions and solve prob-
lems making use of information, human and physical resources [24]. It is composed
of two different and related functions, command and control. Applied to tactical
environments, command is the authority that a commander exercises for efficiently
using available resources and for planning, organizing, coordinating, and control-
ling military systems and forces for the accomplishment of assigned missions. The
main objective of control is to manage the mission problem and minimize the risk of
not reaching a proper solution and to regularize the battlefield systems and forces
according to the commander’s intent.

2.1.2 Consultation, Command and Control (C3) Taxonomy

Similar to the description of C2 competences, the C3 capabilities are those related to
the NATO’s Consultation, Command and Control activities and are focused mainly
on information sharing and interoperability. Thus, the C3 Taxonomy is a principle
that describes the concepts and their relationships involved in all the C3 life cycle
activities [2]. Providing an environment with a shared language to synchronize these
activities and improve connecting NATO’s Strategic Concept and Political Guidance
as it is shown in 2.1. This taxonomy is used in most of the middlewares for tactical
networks proposed in the literature [12, 13, 15, 25, 26].

7

CIS Capabilities

Technical Services

Communication Services

Transmission Services

Transport Services

Communication Access Services

Core Enterprise Services

SOA Platform Services

Enterprise Support Services

COI Services

COI-Specific/Enabling Services

User-Facing Capabilities

User Applications

Infrastructure Services

3

2

1

M
an

ag
em

en
t,

C
on

tr
ol

 a
nd

 S
ec

ur
ity

4

A

Tactical NetworkB

Figure 2.1: Communication and Information System (CIS) Capabilities layer in the
C3 Taxonomy [2]

The Communication and Information Systems (CIS) Capabilities layer describes
the components of the capabilities required to meet NATO’s information system and
communication needs. The Back-End Capabilities layer represents the list of services
and equipment that is required to enable User-Facing Capabilities, expressing the
requirements in communications and data processing [2]. The main blocks that
compose these layers are:

A User-Facing Capabilities: also called software applications. They act as a logi-
cal interface that enables the user to manage and process data to execute tasks
using software components (e.g. Air, Land, Maritime or Space applications).
It is therefore related to problem A.

1. Communication Services: interconnection, exchange and access services that
are essential to managing a tactical network. As for example Multimedia
access, Transport or Communication access services. It is therefore related to
problem A|B.

2. Core Enterprise Services: provides generic, technical functionality to imple-
ment service-oriented architecture (SOA). In this block can be found services
such as Message-Oriented Middleware, Infrastructure or SOA Platform ser-
vices. It is therefore related to problem A|B.

3. Community of Interest (COI): manages a collective group of users with com-
mon missions or business processes. Services such as Modeling and Simulation,
Operations Planning or Situational Awareness are included here. It is there-
fore related to problem A|B.

8

4. Management, Control and Security: cross-layer mechanism to bundle com-
ponents from various classes of taxonomy into a collection with a particular
common characteristic. In this case control, security and service management.
It is therefore related to problem A|B.

B Tactical Network: the conditions of tactical networks vary over time, changing
between connected, disconnected or limited states. It is therefore related to
problem B.

2.1.3 Middleware

Middleware is a software located between the kernel of the operating system and
the applications. It provides services to software applications to establish communi-
cation and administration of the data among them. The use of middlewares allows
hiding the processes and complexity involved in connecting the front-end that the
user perceives with the back-end that offers the data. In the field of tactical net-
works, middlewares take an important role because they act as mediators in the
adoption of web services in ever changing communication scenarios [27]. Some of
the types of middleware are:

• Application server: is a framework that provides the functions to create ap-
plications and a server on which they can be executed [28].

• Data integration: the practice of manipulation of heterogeneous data (from
different sources) in a unified view, so that users can access and manipulate
them [29, 30].

• Application integration: it involves combining data from different applications
through an integration framework [31].

• Application Programming Interface (API): sets of tools, definitions and pro-
tocols for designing application software, which allows a product or service to
communicate with other products and services [32].

• Message-Oriented Middleware (MOM): it supports the exchange of general-
purpose messages in a distributed application environment. Ensuring the de-
livery by using reliable queues and by providing security, and administrative
services required when the destination node is slow or busy (e.g. [8] discussed
in details in the next chapter, Chapter 3).

2.1.4 Java Message Service vs Web service

An interface-based architecture is needed to access the applications and services
that an organization has integrated. This interface-based architecture includes such
technologies as JMS or web services [3]. To be able to discuss the message bench-
marks with greater rigour the characteristics of two of the most used technologies
are described and summarized in Table 2.1. Most of the benchmarks found in the
literature are based on JMS whereas our proposal is based on web services.

9

Java Message Service (JMS)

The JMS is the de facto industry standard interface for MOM [33]. It is an asyn-
chronous message-based interface that supports two messaging models illustrated
in Fig. 2.2, point to point and publish/subscribe. In point to point there are two
clients, a sender and a receiver (1:1). This model ensures the arrival of the message
because messages are sent and stored in a First in, First out (FIFO) queue. In
the case of publish/subscribe there are several clients, some who publish topics and
those who subscribe to these topics and will receive any updates related to them.
Unlike the point-to-point model, this model tends to have more than one consumer
(1:n). This is also called one-to-many message exchange pattern, which is common
in tactical networks given the hierarchical structure of military operations.

JMS frameworks also offer the possibility to work simultaneously (sender and
receiver) in a simulating synchronous mode. Furthermore, their structure guarantees
the interoperability between different frameworks and the delivery of messages. The
delivery modes are:

Non-Persistent/Persistent: in the persistent mode the messages are logged to
persistent storage such as a database or a file system whereas in non-persistent
messages they are stored in memory buffers that could be lost in case of a server
crash.

Non-Transactional/Transactional: messages can be send as a transaction or
not. A transaction is a set of messaging operations that are executed as an
atomic unit of work.

Non-Durable/Durable: subscriptions can be durable or non-durable. In the Non-
durable case a subscriber will only receive published messages while it is active.
In contrast, subscribers do not loose any message during inactivity cycles if
they have a durable subscription.

(a) Point to point messaging (b) Publish/subscribe messaging

Figure 2.2: Point to point and publish/subscribe messaging models

Web Services (WS)

Web services are an implementation of SOA. In SOA there exist three important
components: (1) provider, (2) broker and (3) requester. Web services are interfaces
between a provider and a requester [21]. In that context, the service provider pub-
lishes the services that are not directly visible to the requesters and are managed

10

by the broker. The consumers may know the protocol to subscribe to the interested
service and how to invoke it by using the broker. Service consumers do not know
the way that the services are implemented.

Web services can perform either in a synchronous request/reply mode or in
an asynchronous mode and are based on XML. Some of the standards used are:
(1) SOAP for information transmission, (2) Web Services Description Language
(WSDL) as the protocol for bindings and message formats and (3) Universal De-
scription Discovery and Integration (UDDI) that is a registry for available web
services.

Java Message Service (JMS) Web Services (WS)

Interface coupling No (Payload agnostic) Yes
Technical coupling Yes No
Portability No (Java technology only) Yes (Multi-language)
Reliability Yes HTTP-R binding for SOAP
Transactional Support Limited in scope Only to the queue entry point Future
Security Not part of the standard Limited to SOAP SOAP-SEC
Synchronous mode Do it yourself Yes Major use
Asynchronous mode Yes Yes (Document oriented interface)
Event-driven, push mode Yes Yes

Table 2.1: Comparison between JMS and Web services [3]

2.2 Message Benchmarks

Message benchmarks tests are used in a component or an entire end to end Infor-
mation Technology (IT) system to determine the performance characteristics of the
system or application. The main goal is to stress the system to determine its lim-
itations and bounds to guarantee that applications meet their QoS requirements.
Therefore, we focus our study on the different types of benchmark which are ex-
plained below.

Several works are related to the performance of JMS technology in MOM mid-
dlewares, showing different points of view and levels of detail. To achieve this they
make use of benchmarks that test different JMS servers in order to compare their
capacities. Some of the vendors provide their frameworks, for instance, JBoss Mes-
saging Performance Framework [34], Apache’s ActiveMQ JMeter Performance Test
[35] and MQ-IBM CPH Performance Harness [36]. The main drawback of this group
is that they were created to stress specific MOM features and are not always valid for
analyse the overall performance. Furthermore, the generated workload is synthetic
and consequently they miss the element of randomness, not reflecting a close to real
application scenario in tactical networks.

JBoss Messaging is an updated JMS provider version of JBossMQ in the JBoss
Enterprise Middleware Stack (JEMS) [37]. It is open source and a standard-based
messaging platform that also offers flexibility to SOA initiatives. The simple bench-
mark used in JBoss is called JBoss Messaging Performance Framework and sends
bursts of 1000 KB non-persistent messages gradually increasing the sending rate up
to 3000 messages/second. It only supports a point to point model so it is necessary
to indicate the receivers. The generated environment is limited in the size of mes-
sages and delivery time, in turn, does not offer the possibility to modify the payload
of the message or specify a certain priority to create different types. As a result, it

11

cannot be applied in tactical networks, where different services send messages and
the network suffers disconnections which alternatively causes message bursts.

Apache JMeter application is a competitive open source software originally de-
signed for measuring the performance of Web Applications [38]. It can be used
via Graphical User Interface (GUI) or command line and it is compatible with a
wide variety of applications (Web, SOAP/Representational State Transfer (REST),
File Transfer Protocol (FTP), MOM via JMS, Mail, Transmission Control Protocol
(TCP), Java Objects, etc.). Therefore the test considers both point to point and
publish/subscribe models. The behavior of threads can be configured in the num-
ber of users, ramp up periods and number of test iterations. This software, like
our service, also offers the possibility to user timers between each request by using
mathematical distributions (Poisson, Gaussian, uniform, etc.). Besides the user can
add assertions to check if the received information is correct. The source of the
messages can be obtained randomly from a folder that contains files with extension
.dat, .txt or .obj, but it will sequentially send the already predefined file messages.
This solution provides equivalent features to our proposal except for the generation
of non predefined message chains.

The IBM MQ-CPH Performance Harness was released in 2017 and it is a Java
package solution for JMS service developers. This tool is used for testing the IBM
middlewares WebSphere MQ and WebSphere Message Broker or other JMS servers
by using a Java Naming and Directory Interface (JNDI) module. It is a com-
mand line tool that supports more than 10,000 clients [39]. It allows configuring
the scenario in terms of message size, pacing, the persistence of the messages and
transactionality. Different modules can, for example, wait for a message on a queue
and reply to another queue (responder) or vice-versa (requestor). Despite being a
powerful tool once again the scenario needs to specify the priorities of the messages
(topics), size and times and although several threads with different characteristics
can be configured simultaneously, without randomness it is not a real case.

Another solution proposed in the industry is called jms2009-PS [40], a benchmark
based on the first industry standard SPEC-jms2007 (retired in 2016) and focused in
publish/subscribe systems. One of the most interesting aspects that it offers is to
configure the numbers of queues and fix the number of non-transactional/transactional
and non-persistent/persistent messages. In this tool, the designers improve the fil-
tering on the subscriber side so they can select the messages to download according
to the type and location Identification (ID) of the message within a topic. To com-
plete the design of complex traffic with which to analyze the impact on the network
of users it should include timer options that are not reflected in the documentation.

In terms of most recent benchmarks, it can be found projects as OpenMessaging
Benchmark [41]. It is a open source collaborative Linux Foundation effort supported
by companies like Alibaba or Yahoo! that aims to provide a standard for distributed
messaging based on the cloud. As the tools described above, its features include
number of topics, subscribers per topic, producers and messages and the size and
rate of messages. They also offer scripts to directly use on cloud platforms or analyze
the flows but without any GUI available yet. Although it is a robust tool as it has
the support of large companies, it does not apply to tactical networks mainly due
to the possible existence of delays, memory consumption and security issues when
using cloud services. On the contrary, our service can be uploaded to the cloud with
the appropriate configuration and redirection.

12

Certain works focus on comparing two middlewares using the previous bench-
marks or their own one. In [42] Chen et al. propose a Network Awareness Service
(NAS) that aims to adapt applications to medium-to-long scale performance vari-
ations in mobile tactical networks. To evaluate the accuracy and reaction of their
solution to a limited network where a greater workload than its capacity is loaded,
they send traffic from a client. This traffic is a fixed flow that gradually increases
50 KBps every 100 seconds to exceeds the 128 Kbps link capacity. The total time
of the experiment is 500 seconds. However, no specific implementation about how
the traffic is injected or what is composed of thus we cannot properly compare it
with our solution but we can assume that they use an unreal scenario. The re-
search of Maheshwari presents a benchmark comparison between two middlewares,
Tibco Rendezvous (TIB/RV) and Progress SonicMQ [43]. For this purpose, they
create three scenarios with different scopes writing Java programs with the APIs
provided by the MOMs. The first two scenarios use a fixed number of messages and
publishers/subscribers with a specified message size in both point to point and pub-
lish/subscribe models. The goal of these scenarios is to analyse the average rate of
messages sent and received. In the third scenario a single publisher sends messages
to a specific topic. Then a subscriber compares the starting time with the time when
it receives the first message to find out how quickly a subscriber can initialize the
TIB/RV or Sonic broker and start receiving messages. This experiment is not repro-
ducible as the programs used are not published and were specifically programmed
to deal with RV/Sonic brokers.

Considering other tactical network studies, in [25] an adaptive middleware for
Tactical Mobile Adhoc Network (MANET) applications is proposed called QoS-
aware Adaptive Middleware (QAM). The authors mention that the nature of tacti-
cal networks adds a more complex of traffic than the normal one cause they involve
short unpredictable and irregular bursts of data. Therefore they highlight the im-
portance of generating random patterns of messages with different priorities that
stress tactical systems. At the end of their proposal, they claim to support bursty
data generation patterns as an objective of their ongoing research. On the contrary,
the paper presented by Ghosh et al. [26] in the 2011 Military Communications
(MILCOM) conference did not mention any model to simulate arbitrary patterns.
Instead, they used a toolkit for multicast communication to send chat and images
with a fixed message size and a specific flow duration. In order to prove their hi-
erarchical queuing mechanism, Lopes et al. [1] use a synthetic message data of 500
KB to overflow the network capacity. As this work aims to improve their results,
we already know that the used data flow is not real. Nevertheless, is it clear that
works related to tactical networks support the need to use randomness in the tests.

In the same field of tactical networks, other studies are focusing on ad-hoc net-
works. This type of network is characterized by being decentralized and has dynamic
topologies and proactive and reactive routing protocols. In [44] a mechanism called
Dynamic Detect and Adapt Mechanism (DDAM) is introduced as a solution to
monitor and adapt communications in ad-hoc networks, especially within its Ag-
ile Communications Middleware (ACM). Through four differentiated components
they control and adapt the behavior of the middleware according to the network
conditions. They have a GUI, a module that collects, merges and distributes the
statistics received from other nodes and an Adaptive Communications Management
System. In their experiments they use Mobile Ad-hoc Network Emulator (MANE)

13

to simulate a Tactical Edge Networks (TEN) environment. The procedure consists
of varying the traffic and the type of link between two sub-networks and analysing
the capacity of your solution to detect the type of link (Local Area Network (LAN),
SatCom and High Frequency (HF)). Considering the emulator used we can assume
that both the size of messages and the time-windows were adjustable and fixed, but
we can not confirm other types of variables.

In [45], the Swiss Department of Defence proposes an application-layer routing
algorithm called Tactical Ad-hoc networK Emulation (TAKE). The Swedish navy
seeks to improve the robustness of its communications in MANET networks through
the Optimized Link State Routing (OLSR) protocol. To do so, they develop their
application focusing on routing to ensure that messages reach their destination, re-
ducing message losses or the arrival of non-updated messages. Their software is
tested both in a laboratory environment and in the field. This platform in the con-
trolled environment allows defining the number and characteristics of the nodes that
compose the topology as well as the traffic they generate. In the real environment,
it allows creating profiles where it is possible to specify the size of the messages and
to establish a random time-window. The priority of the messages is not essential
since its objective is to make them reach the addressees.

The alternative of the Naval Research Laboratory (NRL) PROTocol Engineer-
ing Advanced Networking (PROTEAN) research group called ARL Traffic Gener-
ation Tool (ARL) [46] is a powerful tool that extends its previous proposal Multi-
Generator (MGEN) [47]. ARL offers a GUI to edit the traffic flow parameters and
visualize the development on a timeline. Like other previous tools it also offers anal-
ysis scripts. It is an open source software focused in IP network performance tests
and measurements using TCP and UDP/IP traffic, which means that it is valid with
both JMS and web services. The size of the messages is usually delimited by a min-
imum and a maximum so that it will vary between these two values. The priority is
adjustable but it will remain fixed and there is no option to randomize. With their
”burst pattern” they seek to simulate traffic such as Voice over IP (VoIP) by altering
the delivery times. The pattern types available for the time windows are Poisson,
uniform, periodically, burst, jitter and clone, but they do not offer Markov or other
mathematical distributions yet. This tool is the most similar to our proposal.

Benchmark Technology Message size1 Priority1 Time-Window1

JBoss [34] JMS P/Gradually Incr. No No
JMeter [35] JMS/WS A/Fixed rate A (topics) Math. Distributions
IBM MQC[36] JMS A/Fixed rate A (topics) A/Fixed
jms2009PS [40] JMS A/Fixed rate A (topics) No
OpenMessaging [41] JMS/WS A/Fixed rate A (topics) A/Fixed
Chen et al. [42] JMS P/Gradually Incr. A P/Fixed
Maheshwari et al. [43] JMS A/Fixed rate A (topic) No
Ghosh et al. [25, 26] JMS A/Fixed rate A A/Fixed
Lopes et al. [1] WS A/Random No Not needed
ARL [46] JMS/WS A/ Random interval A Math Distributions
DDAM [44] - A/ Fixed rate No A/ Fixed
TAKE [45] WS A/ Fixed rate No Math Distributions
Message Benchmark WS A/Random Random Math. Distributions

1 P = predefined, A = adjustable

Table 2.2: Benchmarks summary

14

Once several benchmarks have been analysed, it can be generally stated that
most of them focus on the use of JMS technology as it is showed in Table 2.2. As it
was declared in the Introduction chapter, the 2005 NNEC FS recommended a SOA
architecture based on web services for tactical networks. It seems therefore that
there is a lack of benchmarks focused on web services. Besides, the works in the
literature agree on the importance of using heterogeneous traffic in experiments but
do not offer realistic solutions. Our service simulates different publishers by sending
messages with different priorities as if several services shared the same network and
scenario. This, together with the use of mathematical distributions both in time
and sequence of messages, means that a scenario close to reality can be set up to
stress and test a system in tactical networks.

2.3 Final remarks

This chapter summarized the fundamental concepts related to tactical networks in
order to understand the basis for the present study. Also, the most used technologies
for the exchange of messages and the concept of middleware were described. Finally,
other related works are described and summarized in a table in order to contextualize
and compare our tool.

15

Chapter 3

Tactical Middleware

This chapter discusses the fundamental infrastructure around a tactical middleware
which has been developed as part of the TACTICS project. As it was mentioned in
the introduction chapter TACTICS is an on-going research project that addresses
the communication challenges of tactical networks. The experiments in this thesis
(discussed later in Chapter 5) were performed in the TACTICS testbed also using the
TACTICS middleware called TSI. Thus, in this chapter we describe both the testbed
and the software architecture developed within TACTICS. Then the problem that
we are facing inside TACTICS and tactical networks in general is defined together
with our results published in [23].

3.1 Testbed in tactical networks

The challenges experienced in a testbed using real military radios are the motiva-
tion for the development of many investigations, such as the radio buffer overflow
discussed in [1]. As it was stated before, these networks are characterized by low
bandwidth communication links with high delays, frequent disruptions and unpre-
dictable mobility patterns. The Figure 3.1 illustrates a typical tactical network
topology composed by three different networks connecting the nodes and the Head-
quarters (HQ): UHF (nominal datarate of 240 kbps, coverage of 2 km), VHF (nom-
inal datarate of 9.6 kbps, coverage of 20 km) and SatCom (nominal datarate up to
500 kbps potentially covering the whole planet). In this network structure there are
at least three types of nodes, namely: deployed, mobile and dismounted. Due to the
different network coverages, it is necessary to create a backbone between the nodes
at the edge and the nodes at the HQ by using VHF and SatCom.

If we consider the scalability of this simple testbed considering the radios (PR4G
and Starmille) and networks used by Lopes et al. [1] the worst case scenario would
have theoretically a total of ∼416 nodes (32 VHF radios functioning as a backbone
for 14 UHF radios). This fact suggests that the user-generated data flows will often
exceed the tactical network capacity. The most limiting factor is the VHF network
because it has the lowest datarate (up to 9.6 kbps with PR4Gs). For that reason,
the laboratory tests are focused mainly on VHF networks as it is shown in Figure
3.6. In this figure, all nodes are connected to a Virtual LAN (VLAN) switch reusing
the architecture described in [48, 49].

The most challenging scenario would be the 32 expandable squads in the VHF
network made up of 14 expandable nodes in the UHF network. It must be considered

16

Figure 3.1: Testbed - abstract level: network topology and node types [1]

that both the nodes in the VHF and UHF networks would share the 9.6 kbps and
240 kbps respectively. At the same time, the same squad can have radios that
connect two different networks. Such scenario justifies the implementation of our
tool (described later in Chapter 4) because the dataflows in such a network would
be difficult to predict.

The laboratory infrastructure allows testing with unicast and multicast trans-
mission modes. Unicast transmissions are performed one-to-one, in other words in
this method the data is sent from a single transmitter to a single receiver. Multicast
is a method of one-to-many transmission, sending data to multiple destinations si-
multaneously. For example, the headquaters in Figure 3.1 could send a message to
all the dismounted nodes in the edge of the network. When sending large amounts
of data the multicast method saves considerably the bandwidth in the network con-
cerning other methods such as broadcast because most of the data is sent only once.
Depending on the desired method, a single receiver or several receivers are indicated
and therefore the traffic in one or more nodes will be analyzed.

3.2 Architecture of TACTICS

TSI is an implementation of the reference architecture introduced during the TAC-
TICS project that seeks to overcome the problems faced by the propagation of
SOA in the tactical military environment [8]. It combines technologies relying on
cross-layer information exchange to find the overlay path from source to destination
through a list of proxies, delay-tolerant networks to select the best option depending
on the context of the service call and store-and-forward mechanisms.

Figure 3.2 shows the TSI hierarchy of queues represented by a flow diagram.
The letters indicate the two dynamic parts by labeling the change in the user data-
flows with an A and the network conditions with a B. The core services of the
Consultation, Command and Control (C3) taxonomy are numbered from 1 to 4 and
the control points with the roman letter i to iii. In this figure, the three problems
defined in the Introduction chapter (problems A, B and A|B) can be appreciated

17

CIS Capabilities

Technical Services

Communication Services
Transmission Services

Transport Services

Communication Access Services

Core Enterprise Services

SOA Platform Services

Enterprise Support Services

COI Services
COI-Specific/Enabling Services

User-Facing Capabilities
User Applications

Infrastructure Services

3

2

1

M
an

ag
em

en
t,

C
on

tro
l a

nd
 S

ec
ur

ity

4

A

D2 D3D1
Tactical NetworkB

B

Sleep x: queue 0: dequeue

No: pause Yes: dequeue

How long to admission?

Buffer below b%?

Sender

Message
500 KB with random

payload

ε3

Invoke:

ii

iii Inter-packet interval

C
ross-layer C

ontextual M
onitoring

Proxy/Broker

Message Queue
3

UDP Transport

Packet Handler
2

1

4

QoS Handler

Routing

zUkWcE7uWxvXgkH5Zh
GpJ/Ehr8CDohpY/AVy1
QkCDuA0eszi/LzhYf1BK
+23OasWSTHjaMhGNA
OfwdDoYy0ewxOngwIgc
AbYWigkZw/qvP7n6i1Ei
AKYpqDKg+VDKTCVynTo
O80qdYeskgd7ZHv2lv

A

i

Ever‐changing datarates patterns

A|B

Figure 3.2: TSI queue hierarchy

again with a greater level of detail.

After receiving and storing the messages generated by the user services in the
queue Qm, a method called ’How long to admission?’ invoke the QoS handler.
This method returns the expected time to finish the current data exchange. If its
output is zero seconds, the message is dequeued and send to UDP transport service.
Otherwise, the message queue sleeps the same amount of seconds that is given
by the method. Then, the authors implemented two ways to manage the packet
handler service that controls the IP packets. If ∆Bi < b% being ∆Bi the radio
buffer occupancy and b a predefined threshold, it sends packets. Else, it queues
the packets until the buffer is below the static threshold (reactive control) or it
computes the number of packets to keep the buffer usage within the b% (proactive
control). The proactive control is based on introducing an IPI between packets to
adjust the input data rate. Consequently, this hierarchy of queues complement each
other shaping the user generated dataflow to the current network conditions also
avoiding buffer overflow.

3.3 Ever-changing datarates

In [23], we discussed experiments by bringing together two previous investigations
[1][10] to test their new queuing mechanism. In these investigations, a message
four times larger than the capacity of the VHF radio buffer (indicated at the top of
Figure 3.2) was used to analyze system’s performance over three different patterns of
datarate change, namely D1, D2, D3 (shown at the bottom on Figure 3.2). Therefore
the study is mainly focused on problems A|B and B.

The model defined to create three different patterns alternating between the five
different datarates supported by the PR4G radios (from 0.6 to 9.6 kbps) is based

18

on stochastic processes (Markov chains). In Figure 3.3, the three different patterns
(D1 (red), D2 (blue) and D3 (green)) are shown. Notice that this figure is annotated with
three symbols; ’+’ for datarate increment, ’=’ for equal datarate and ’-’ for datarate
decrements. Each of the patterns generates a sequence of 100 states starting at the
bottom left corner and ending at the top right corner. Each state is represented by a
number from 1 to 5 where 1 corresponds to the lowest and 5 to the highest datarate
and a lighter or darker color the smaller or larger the datarate. The same way we use
it in our work, the term ”ever-changing” is used because the possible combinations
come from a permutation of

(
100
5

)
= 75, 287, 520 combinations. Thus the D1 pattern

represented in red color contains the lowest datarate showing a situation in which
the network does not have favorable conditions. Pattern D2 in blue illustrates a
pendulum behaviour starting from the most favorable state and changing up to the
most challenging. Pattern D3 contains the highest states so it simulates a mostly
propitious situation. As a result, the average datarate for the three sequences are
1.8 kbps (± 1.57) for D1(red), 4.14 kbps (± 3.12) for D2(blue) and 6.51 kbps (± 3.16)
for D3(green), therefore creating different network conditions.

3 2− 2= 2= 1− 2+ 5+ 3− 1− 2+

1 + 2 + 3 − 1 + 3 − 1 + 3 = 3 = 3 = 3 =

3 = 3 = 3 = 3 = 3 − 1 + 2 − 1 = 1 + 3 −

2 + 3 = 3 − 2 + 3 − 1 + 3 = 3 − 1 = 1 +

2 = 2 + 3 − 2 + 3 − 2 − 1 + 2 + 3 − 1 +

3 = 3 − 1 + 2 + 3 − 2 = 2 − 1 + 3 − 1 =

1 + 3 = 3 + 5 − 3 − 1 + 3 − 2 + 3 − 2 +

3 − 1 + 5 − 1 + 3 − 2 = 2 + 3 = 3 − 1 =

1 + 2 + 3 − 2 + 3 − 1 + 2 + 3 = 3 − 1 +

3 − 1 + 3 = 3 = 3 − 2 + 3 = 3 = 3 − 1

(a) D1 (red) ∼ 1.6 kbps

5 4− 3− 2− 1− 2+ 3+ 4+ 5+ 4−

3 − 2 − 1 + 2 + 3 + 4 + 5 − 4 − 3 − 2 −

1 + 2 + 3 + 4 + 5 − 4 − 3 − 2 − 1 + 2 +

3 + 4 + 5 − 4 − 3 − 2 − 1 + 2 + 3 + 4 +

5 − 4 − 3 − 2 − 1 + 2 + 3 + 4 + 5 − 4 −

3 − 2 − 1 + 2 + 3 + 4 + 5 − 4 − 3 − 2 −

1 + 2 + 3 + 4 + 5 − 4 − 3 − 2 − 1 + 2 +

3 + 4 + 5 − 4 − 3 − 2 − 1 + 2 + 3 + 4 +

5 − 4 − 3 − 2 − 1 + 2 + 3 + 4 + 5 − 4 −

3 − 2 − 1 + 2 + 3 + 4 + 5 − 4 − 3 − 2

(b) D2 (blue) ∼ 3.4 kbps

5 4− 4= 4= 3− 4+ 5+ 5= 3− 4+

3 + 4 + 5 − 3 + 5 − 3 + 5 = 5 = 5 = 5 =

5 = 5 = 5 = 5 = 5 − 3 + 4 − 3 = 3 + 5 −

4 + 5 = 5 − 4 + 5 − 3 + 5 = 5 − 2 + 3 +

4 = 4 + 5 − 4 + 5 − 4 − 3 + 4 + 5 − 3 +

5 = 5 − 3 + 4 + 5 − 4 = 4 − 3 + 5 − 3 =

3 + 5 = 5 = 5 = 5 − 3 + 5 − 4 + 5 − 4 +

5 − 3 + 5 − 3 + 5 − 4 = 4 + 5 = 5 − 3 =

3 + 4 + 5 − 4 + 5 − 3 + 4 + 5 = 5 − 3 +

5 − 3 + 5 = 5 = 5 − 4 + 5 = 5 = 5 − 3

(c) D3 (green) ∼ 5.4 kbps

Figure 3.3: Sequence of datarates from D1, D2 and D3

19

0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

0
0

Time (sec)

B
u

ff
e

r
(%

)

100%

10%

Overflow

Reactive

Proactive

(a) Radio buffer B: overflow (red), reactive (grey), proactive (black)

0 200 400 600 800 1000

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Time (sec)

S
iz

e
 (

K
B

)

100%

10%

B.overflow

B.reactive

B.proactive

Q.reactive

Q.proactive

(b) Queue of packets Q: reactive (grey) and proactive (black)

Figure 3.4: Comparison between reactive/proactive solutions

To test the performance of their hybrid solution (by combining reactive [1] and
proactive [11] solutions) Lopes et al. experiment with stable laboratory conditions
compared to the reactive solution. In it, they analyze the evolution of the radio buffer
and queue of packets for overflow (red circles), reactive solution (grey triangles) and
hybrid/proactive solution (black +). Figure 3.4a plots the buffer occupancy (%) over
time, here the overflow curve is used as a baseline for the comparison to highlight that
the 500 KB message overflows the radio without a mechanism to shape the dataflow.
The reactive solution (grey curve) successfully sends the message creating peaks of
buffer usage (up to 50% of the buffer) because the mechanism keeps sending packets
until the system learns that the threshold was crossed. The proactive solution stays
around the 10% predefined threshold because it uses the feedback from the radio and
routing protocol. By consequence, the proactive solution (black curve) relies more
on the queue of packets as plotted in Figure 3.4b. In this figure, both mechanisms
have almost half of the message (∼250 KB) stored in the queue of packets after ∼5
minutes (∼300 seconds in the plot). Also notice that the size of the packets queue
is almost the double than the radio buffer size (128 KB).

In sequence, they repeated the same experiment using the three patterns D1,
D2 and D3 to change the network conditions. The Figure 3.5a shows the evolution

20

0 500 1000 1500 2000 2500 3000

0
5

1
0

1
5

2
0

Time (sec)

B
u

ff
e

r
(%

)

10%

D1

D2

D3

(a) Radio buffer B: D1 (red), D2 (blue) and D3 (green)

0 500 1000 1500 2000

0
5

0
1

0
0

2
0

0
3

0
0

Time (sec)

S
iz

e
 (

K
B

)

100%

10%

B.overflow

B.D1

B.D2

B.D3

Q.D1

Q.D2

Q.D3

(b) Queue of packets Q: D1 (red), D2 (blue) and D3 (green)

Figure 3.5: Radio buffer (%) and Queue of packets (KB)

of the radio buffer over time, allowing to compare the duration of each experiment.
The duration is different for each of the patterns because the datarate they use
is different, nevertheless, it is demonstrated that the message is sent despite the
different conditions of the network. It is also observed that the occupancy of the
buffer oscillates around the 10 % predefined threshold. In Figure 3.5b, queue size
is plotted as a function of time showing that the hybrid solution relies more on the
queue of packets during the more challenging network conditions Q.D1(red), followed
by Q.D2(blue) and then by Q.D3(green) which is the best scenario, when compared to
the other two.

3.4 Ever-changing QoS-constrained dataflows

With the previous section as a motivation to implement our solution tool to also
create ever-changing QoS-constrained dataflows, we have already discussed that the
forces use a variety of command and control services to communicate in tactical
networks. Therefore, it is probable to have outbursts of messages in emergency
scenarios like medical evacuations (Problem A). The problem here would be the
bottleneck traffic created involving messages of different priorities sent at different

21

times and stored in a queue. To test a system that will have to deal with a situation
with disconnections, delays, loss of messages, messages with different sizes and with
QoS-requirements to meet it is important to have a tool to challenge the performance
bounds of the hierarchy of queues developed by TACTICS.

In order to define the limits of a system in tactical networks and to be able to
test and improve it, we propose a tool called message benchmark. With this we
seek to fill the gap in the related literature where real situations that include the
element of randomness are missing. Message benchmark is a service that simulates
different scenarios by adjusting metrics as message size, message priority and time-
window between messages. It offers an infinite number of possible message pattern
combinations to stress the system as the user can select the desired size in KB,
modify the Markov chains or probabilities and choose distributions with different
means and standard deviations as discussed in details in the next chapter (Chapter
4).

3.5 Final remarks

This chapter has described the architecture of TACTICS, the problem of ever-
changing datarates addressed in previous investigations and the problem of ever-
changing QoS-constrained dataflows addressed by this thesis. In the purpose of
simulating user dataflows that stress TACTICS store-and-forward systems, a tool
has been developed. This tool is therefore located in the user application layer, at
the beginning of the entire TACTICS pipeline, as shown in Figure 3.2. In this way,
the limits of the middleware and the effect of the traffic injected into the network
can be analyzed.

22

VH
F

19
2.

16
8.

11
.0

/2
4

22
4.

0.
1.

25
5

R
ad

io
1

(P
R

4G
 #

9)
O

U
T:

 1
92

.1
68

.1
10

.9
IN

: 1
92

.1
68

.1
1.

9

R
ad

io
3

(P
R

4G
 #

2)
O

U
T:

 1
92

.1
68

.1
11

.2
IN

: 1
92

.1
68

.1
1.

2

L#
2

(L
ap

to
p

2)
l2
.c

wi
x.
de

10
.1
.2
.1

12
,
19

2.
16
8.

1.
11
2

R
ad

io
2

(P
R

4G
 #

7)
O

U
T:

 1
92

.1
68

.1
21

.7
IN

: 1
92

.1
68

.1
1.

7
Em

ul
at

ed
 S

at
C

om

(1
00

kb
ps

, 2
50

m
s)

10
.8

0.
0.

0/
24

V
LA

N
 1

03
 –

10
.1

.3
.1

03

V
LA

N
 1

02

V
LA

N
 1

03

VL
A

N
 1

05

V
LA

N
 1

03
 –

10
.1

.2
.1

02

VL
A

N
 1

04
 –

19
2.

16
8.

1.
10

2
-

M
an

ag
em

en
t

V
LA

N
 1

04
 –

19
2.

16
8.

1.
10

2
-

M
an

ag
em

en
t

Tr
un

k

Tr
un

k

R
#2

 (R
ou

te
r 2

)
TS

I I
P:

 1
0.

2.
0.

10
2

r2
.c

wi
x.
de

S#
2

(S
w

itc
h

2)

R
#3

 (R
ou

te
r 3

)
TS

I I
P:

 1
0.

2.
0.

10
3

r3
.c
wi

x.
de

S#
3

(S
w

itc
h

3)

L#
3

(L
ap

to
p

3)
l3

.c
wi

x.
de

10
.1

.3
.1
13

,
19
2.
16

8.
1.
11

3

S#
1

(S
w

itc
h

1)

VL
A

N
 1

01
 -

?

R
#1

 (R
ou

te
r 1

)
TS

I I
P:

 1
0.

2.
0.

10
1

r1
.c
wi

x.
de

L#
1

(L
ap

to
p

1)
l1
.c
wi

x.
de

10
.1

.1
.1
11

,
19
2.

16
8.
1.

11
1

3x
 L

ap
to

ps
D

el
l I

ns
pi

ro
n

15

3x
 R

ou
te

r
Fa

nl
es

s
ba

re
bo

ne

3x
 R

ad
io

s
PR

4G

3x
 S

w
itc

h
U

bi
qu

iti
 T

ou
gh

VL
A

N
 1

03
 –

10
.1

.1
.1

01

VL
A

N
 1

07

Tr
un

k

S#
4

(S
w

itc
h

4)

M
an

ag
em

en
t

C
on

so
le

M
an

ag
em

en
t –

19
2.

16
8.

1.
15

2

M
an

ag
em

en
t –

19
2.

16
8.

1.
15

1

M
an

ag
em

en
t –

19
2.

16
8.

1.
15

3

V
LA

N
 1

01
 –

19
2.

16
8.

11
1.

1
-

D
E

U
-V

H
F

V
LA

N
 1

01
 –

19
2.

16
8.

12
1.

1
-

D
E

U
-V

H
F

V
LA

N
 1

02
 –

10
.1

00
.0

.1
-

S
at

C
om

VL
A

N
 1

02
 –

19
2.

16
8.

11
0.

1
-

D
E

U
-V

H
F

VL
A

N
 1

06
 –

10
.1

00
.0

.2
 -

S
at

C
om

VL
A

N
 1

04
 –

19
2.

16
8.

1.
10

1
-

M
an

ag
em

en
t

V
LA

N
 1

04
 –

19
2.

16
8.

1.
10

3
-

M
an

ag
em

en
t

D
at

a
pl

an
e

C
on

tro
l p

la
ne

T#
1

(T
ab

le
t 1

)
t1
.c

wi
x.
de

10
.1
.1
.1

12
,
19
2.

16
8.
1.

11
2

Figure 3.6: Testbed: physical network VHF

23

Chapter 4

Creating QoS-Constrained
Dataflows

We designed a tool called ”Message Benchmark” to create QoS-constrained data-
flows to challenge the store-and-forward mechanisms in tactical networks. In this
chapter, the methodology we used throughout this study is discussed together with
a description of the resources we use to conduct the experiments. Our tool relies
on the publish/subscribe infrastructure implemented by the TSI middleware. Our
development reused a user service called TACTICS Obstacle Alert service (OAS),
so this service is briefly explained and, finally, the implementations made in our tool
to perform the experiments are described in details.

4.1 Methodology

Based on the problem statement described in Chapter 1 and assuming a set of
C2 services, the methodology starts with the analysis and understanding of the
TACTICS Obstacle Alert project, in order to become familiar with the infrastructure
that will serve as the basis for the present work. Obstacle Alert Service (OAS) is a
service used to warn of obstacles through the publish/subscribe pattern. Therefore,
once understood the operation of the same the set covering the transmission and
type of messages and the GUI is adapted, improved and used to the purpose of our
investigatin, that is develop a tool to create different patterns of QoS-constrained
dataflows.

The next step is, therefore, to decide the new functionalities to create a realistic
and reproducible chain of messages simulating the user’s behaviour during a par-
ticular event/mission. These, as proposed by Lopes et al. in his work [11], focus
on the randomization of the priorities of the messages and we also decide to add a
time-windows between them. Then, the stochastic models are developed in Java to
generate the message strings. For the configuration of the priority in the messages,
four different patterns were implemented: (1) stochastic model based on Markov
chains, (2) model based on Markov strings where the user indicates the sequence of
priorities, (3) statistical probability model and (4) a configurable default option. As
for time-windows between messages, mathematical distributions were also developed
(uniform, Gaussian, exponential, Poisson, log-normal and Pareto).

Finally, the flexibility of the models implemented by our tool was tested in a lab-
oratory offered by the Fraunhofer FKIE (FKIE) as was explained in the TACTICS

24

chapter (Chapter 3) with different combinations of messages and QoS requirements.
To do this, three experiments of a different nature (one large message, many mes-
sages in burst mode and with time-window respectively) are carried out and the
impact on the network and the radio buffers is analysed.

4.1.1 Resources

Considering the setup of TACTICS, the specific part of the structure used in this
thesis is composed of three PR4G Radios, three laptops, three routers and three
VLAN switches; whose specifications are listed in Table 4.1. There are several
VLAN connections among the switches and routers emulating/simulating different
networks (e.g. SatCom, VHF, Management, etc.) that can be used one at a time
since they are physically linked through an interface. Nodes are emulated using the
computers and a backbone based in VHF radios is also established. The work mode
consists in setting a node as manager console from which to launch the tool, a switch
as manager network and the radio as the one in charge of transmitting the dataflow.
Based on that, we generate the dataflows by using the message benchmark tool to
stress the performance bounds of middlewares and networks.

PR4G Radio [50]
Dimensions (WxHxD) 290x140x340 mm
RF output power Up to 10 Watt (W)
Operating temperature -40 ºC to +70 ºC
Frequency range 30-88 MHz
Data transmission IP packet routing 4.8-38.4 Kbps
Dell Inspiron 15 [51]
Central Processing Unit (CPU) 2.4 GHz Intel Core i7-75500U (dual-core, 4MB cache, up to 3 GHz)
Random Access Memory (RAM) 8 Gigabyte (GB) Double Data Rate (DDR) 3
Storage 1 Terabyte (TB) Hard Disk Drive (HDD) 5.400 Revolutions Per Minute (RPM)
Graphics AMD Radeon R7 M265
Fanless Barebone Router [52]
CPU 2 GHz Intel Celeron
RAM DDR3 Synchronous Dynamic Random-Access Memory (SDRAM)
Voltage 12 Volt (V)
Ubiquiti Tough Switch [53]
Processor MIPS24K 400 MHz
System memory 64 Megabyte (MB)
Power over Ethernet (PoE) out Voltage range 22-24 VDC
Networking
interfaces

Management Port 10/100 Ethernet Port
Data Ports 10/100/1000 Ethernet Ports

Table 4.1: Specifications of the equipment composing the testbed

4.2 Publish/Subscribe messaging

The TACTICS OAS has the purpose of informing COI subscribers of the existence
of an obstacle by updating the Local and Common Operational Pictures (COP)
during the convoy movements. It is composed by two correlated components: (1)
the service implementation itself in charge of the generation and forwarding of alert
notifications and (2) the operational client where attributes of the specific scenario
conditions are defined. The service implements a interface with the Notification
Broker and uses a graphic interface to allows users to send the alerts to a predefined
topic, thus implementing the publish/subscribe messaging pattern.

25

In this project we also make use of the Notification Broker core service, in par-
ticular of the Notify operation to publish the messages. To this end, the service
”message benchmark” reuses the interfaces developed in the Obstacle Alert service
(NotificationProducer, RegisterPublisher and NotificationConsumer). The reason is
to take advantage of the implementation already established of the publish/subscribe
message exchange in the user applications layer.

The improvements added to this service are grouped in three categories: (1)
number and size of message, (2) message priority and (3) message time-window. This
new service offers the possibility to generate different scenarios by setting message
parameters. Notice that we are able to generate a combination of 36 different setups
of messages using the features of these categories. Every new feature is defined in
the following three subsections.

4.2.1 Message size

The first improvement is related to the configuration of both the number of messages
to be sent and the number of sequence of messages. In order to modify the size of
messages we created a sequence of random characters to change the payload of the
message according to the desired magnitude indicated by the user. On the other
hand, the total size of the message sequence can be also indicated or a default size
can be used. In this way, the system can be tested using a specific workload defined
by the user through the GUI.

4.2.2 Message priority

The priority of the message is essential to manage it in the queue of messages and
give preference to the most relevant ones, depending on the strategy used. We
have developed four different modes to set the message priority. In the first one,
the user can choose a scenario (low, medium or high priority) based on different
Markov chains described in [10], the second option generates messages following the
chain of priorities configured by the user in the column ”priority”, described in the
Application section 4.3. The third one uses a statistical probability model based on
the new column ”probability” in the GUI also explained in the Application section
4.3 and the last one uses priorities by default.

A Markov chain is a specific stochastic process in the field of probabilistic models
[54]. Discrete-time Markov chains are those in which the state changes at a certain
discrete time. The state of the chain in the instant t is denoted by xt and it belongs
to a specific set of possible states. As the time goes by, changes of state take place
in probabilistic terms and are represented through of the so-called probabilities of
transition between states, which in the case of transitions in a stage corresponds to
the probability of moving from a state to another from a time step t to the next t
+ 1.

4.2.3 Message time-window

The time-window is the time that the system waits between sending each sequence of
message. In this context, other probabilistic models can be used to simulate the hu-
man behavior with the element of randomness. For example, Bernoulli and Poisson

26

distributions that use a discretization of the time into periods or a continuous-time
respectively. One is based on an arrival p per trial and the other on an arrival
rate λ per unit of time [55]. For that reason we decided to offer two options, static
time window or dynamic (choosing a distribution). The dynamic time-window is
generated using the configuration chosen by the user in one of the following distri-
butions explained in the next section 4.3: uniform, Gaussian, exponential, Poisson,
log-normal or Pareto.

4.3 The Message Benchmark Application

The interaction with the user is done through a GUI in order to simplify the modifi-
cation of the variables to be used in the realization of the experiments, as shown in
Figure 4.1. Next, we match each function (numbers from 1 to 8 in the figure) and
its respective explanation as following:

Figure 4.1: Graphical User Interface of Message Benchmark tool

1. Sequence: first it is needed to specify the number of messages per sequence
and the message sequences to send. Considering a sequence as a set of mes-
sages composed by different messages. These parameters are used to stress
the system and simulate different user behaviors by adding workload to the
network.

2. Size: in the second step the size of the sequence or messages individually is
defined. Using one of the three available buttons the user can (a) indicate the

27

desired sequence size in KB, which automatically will calculate the size per
message, (b) indicate the desired size per message individually or (c) choose
the default size messages. To achieve the requested message size the algorithm
adjusts the length of the description field (see column description in Figure
4.1).

3. Priority: there are four different options for defining the priority of messages.
By selecting the ”low”, ”medium” or ”high” buttons, the user indicates which
scenario he wants to use according to the Markov chain used. In this way, the
high scenario would be the one with the highest probabilities of change of state
(service) and the low the one with the least, simulating a more chaotic situation
or less. The election of ”Msg. Behavior” allows the user to specify the data
with priorities in the ”priority” column, as for example using the information
about previous experiences. Our service will generate a chain of messages
employing a Markov probability matrix based on the priority preferences that
the user has previously indicated. On the other hand, the button ”Msg prob.”
uses a model based on the probabilities of the ”probability” column and finally,
the ”default” button fires the algorithm using the messages offered by default.

4. Time sequence: the last configuration step defines the time-window mode.
By selecting the static one the time-window will remain fixed until the end of
the experiment. The dynamic option allows choosing one of the distributions
indicating previously the mean, standard deviation or interval according to the
model. As a result, the algorithm will generate different time-windows that
will be embedded between the message sequences.

5. Duration: in the upper right corner of the GUI there is a counter to define
if a time of duration of the experiment is desired. Using this parameter it is
possible to observe for example how the middleware treats a string of messages
that has been interrupted.

6. Messages: at the bottom of the GUI there is a table in which the user can
modify any of the messages as desired. Adding or deleting rows and modifying
the values in the columns. If the user wants to use, for instance, the ”Msg.
behaviour” priority option the user could insert and/or modify new rows with
the data he wants to analyze.

7. ”Send Custom” button: this button launches the application including all
the messages presented in the table and taking into account the parameters
indicated by the user.

8. ”Send Selected” button: this button is in charge of launching the applica-
tion considering the parameters indicated by the user and the message selected
in the table.

The service message benchmark allows configuring the setup according to the
user’s needs. In addition to the description of our application, the taken flow by the
GUI can be seen in Figure 4.2, following the configuration process from left to right
and from top to bottom.

To exemplify the use of Message Benchmark tool, as show in Figure 4.1, the user
created a scenario with 3 sequence of messages with 5 message each and size of 500

28

Figure 4.2: UML activity diagram

KB. The priority of the five messages is randomly generated following a probability
matrix (Markov) in the low option (stable scenario) and the time-window between
each sequence set to five seconds. The total duration of the experiment is one minute
and the message parameters can be seen in the table at the bottom (notice that the
algorithm will change the size of the description to reach the desired message size).

The general structure of classes composing the message benchmark project is
shown in the UML class diagram in Figure 4.8. The main class of the project is
obstacleAlertGUI because it is in charge of controlling and launching the service.
The most relevant classes are explained below.

The class Tactics was modified to support new features of the message bench-
mark. When the user calls ”Send Custom” button the array obtained from the
GUI is stored by the algorithm 1 (Appendix C) as a LinkedHashMap and using the
publish/subscribe protocol the messages will be sent to the system pipeline with
different priorities depending on the topic selected. This means that a message with
the same content can acquire a different priority in the message queue depending on
which topic it belongs to. It is therefore necessary to distinguish between the prior-
ities that some topics have in front of others and at the same time some messages
in front of others within a specific topic. The array that receives Tactics from the
GUI contains the position of the messages concerning the table to be sent sequen-
tially already ordered. In this way, this class only focuses on sending the requested
messages.

The class MarkovMsgGeneratorProbMatrix generates sequences of messages fol-
lowing the model introduced in [11]. First, a matrix A represents the Markov chain
of the four services (s1,s2,s3,s4) and the relation between them (i.e. the conditional
probabilities). The services are previously defined in Table 1.1. Then, the Algorithm
2 (Appendix C) will create a sequence of a desired number of messages numbered
as shown in Figure 4.3 from left to right indicating the progression in which it will

29

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(a) Sequence of messages.

Figure 4.3: Sequences of Messages

be sent to the tactical network. The darker the color of the ordered message, the
higher priority it will have in the message queue: 0 flash (black), 1 immediate, 2
priority and 3 routine (gray). We have associated blue color with the low scenario,
green with medium and red with high. The Results chapter shows a visual compar-
ison of the behavior of the different options to associate a priority to the messages
generated by our tool.

To show the randomness of the developed model it is enough to execute it several
times. As a consequence, different message strings are generated. As can be seen
in Figure 4.4, using different seeds, sequences of 100 messages with different com-
positions are obtained. Since Figures 4.4a, 4.4b, 4.4c and 4.4d has 16, 19, 15 and
16 high priority messages randomly distributed respectively. By observing the color
pattern it is also possible to easily discern the differences in number and allocation
of each type of message.

For a better understanding and testing of the model, an alternative script has also
been developed. It generates and presents smaller sequences (20 messages) with 20
queues side-by-side. This allows to measure the effectiveness of the algorithm when
generating strings of messages with different nature. Figure 4.5 shows the result of
using three different matrices (A1, A2 and A3) representing three different scenarios
differentiated by colors as discussed above. Figures 4.5a, 4.5b, 4.5c, 4.5d, 4.5e and
4.5f show the different strings in terms of message priority and order of arrival.

The script was firstly developed in R [56] and then transformed to Java in order
to be able to upload the code to the network using the open source software Ansible
[57]. As a result, the future chain of messages is stored in an array indicating its order
of arrival, priority and position in the sequence. Different Markov chains are used to
simulate different scenarios, from more stable scenarios to scenarios that are more
likely to change between states as can be seen in the simulation matrices defined in
the result section. The distribution model that forms the basis of the algorithm is
a sequence of random variables X1, X2, X3, ... Xt where the probability of moving
to the next state depends only on the present state and not on the previous states.
Being st the state of the process at time t, t = 0,1,2... as follows:

30

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(a) First run

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(b) Second run

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(c) Third run

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(d) Fourth run

Figure 4.4: Sequences of Messages using different seeds

P (Xt+1 = st+1|Xt = st, Xt−1 = st−1, . . . , X0 = s0) = P (Xt+1 = st+1|Xt = st) (4.1)

The transition probability matrix P in 4.2 represents the probabilities of moving
from i to j in one time step. Considering i as the row and j as the column and always
changing the state in the finite state space S, for example, P3,2 is the probability
of changing from state 3 to state 2. In Figure 4.6 a generic state diagram can be
observed.

P =



1 2 3 4

1 P1,1 P1,2 P1,3 P1,4

2 P2,1 P2,2 P2,3 P2,4

3 P3,1 P3,2 P3,3 P3,3

4 P4,1 P4,2 P4,3 P4,4

 (4.2)

31

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

0

5

10

15

20

0 5 10 15 20

Queue(s)

M
e
s
s
a
g
e
(s

)

(a) A1 arrival order 20x20

7 5 15 1 16 15 7 17 8 10 10 19 1 12 7 15 9 3 19 12

1 2 16 2 8 20 19 2 1 3 12 20 4 1 12 16 3 5 1 3

3 3 4 4 2 1 1 3 2 4 3 1 2 3 2 1 7 6 2 4

4 7 5 6 3 2 13 5 3 5 4 4 5 4 3 2 1 7 4 5

5 9 6 8 4 5 14 8 4 6 5 6 6 5 4 3 2 10 8 7

6 11 7 12 5 7 17 10 5 7 6 7 9 9 5 4 4 12 10 8

10 13 8 13 9 8 2 12 6 9 7 8 11 13 6 6 6 13 11 9

11 15 12 19 10 9 10 13 10 11 11 10 12 14 8 7 11 16 12 13

12 16 13 20 11 10 16 14 11 12 15 11 13 15 9 8 12 19 15 16

13 17 14 3 12 11 18 18 12 15 16 12 14 17 10 9 13 20 16 17

14 18 20 5 13 12 20 19 15 18 17 15 17 18 14 11 16 1 17 18

15 19 1 7 14 13 3 20 16 19 18 17 18 2 15 12 17 2 18 19

19 1 2 9 20 14 4 1 17 1 19 18 3 6 16 14 18 4 20 1

20 4 3 10 1 16 5 4 18 2 1 2 7 7 17 18 19 8 3 2

2 6 9 11 6 18 6 6 7 8 2 3 8 8 1 19 5 9 5 6

8 8 10 14 7 19 8 7 9 13 8 5 10 10 11 20 8 11 6 10

9 10 11 15 15 3 9 9 13 14 9 9 15 11 13 5 10 14 7 11

16 12 17 16 17 4 11 11 14 16 13 13 16 16 18 10 14 15 9 14

17 14 18 17 18 6 12 15 19 17 14 14 19 19 19 13 15 17 13 15

18 20 19 18 19 17 15 16 20 20 20 16 20 20 20 17 20 18 14 20

0

5

10

15

20

0 5 10 15 20

Queue(s)

M
e
s
s
a
g
e
(s

)

(b) A1 sorted by priority 20x20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

0

5

10

15

20

0 5 10 15 20

Queue(s)

M
e
s
s
a
g
e
(s

)

(c) A2 arrival order 20x20

7 5 12 1 3 13 1 2 8 6 4 15 1 5 7 2 1 6 12 9

3 13 15 20 8 15 7 3 18 7 7 18 2 9 10 3 3 7 19 12

5 15 16 13 16 16 13 14 2 10 10 19 4 12 12 6 7 10 20 13

10 18 4 19 20 20 14 17 3 12 12 20 5 3 4 7 9 19 4 16

19 19 6 2 2 11 17 5 4 3 18 1 9 13 6 9 11 2 10 3

1 2 7 3 4 12 18 13 6 5 19 4 6 14 9 11 16 3 16 7

4 3 14 4 5 1 19 19 10 18 6 10 11 15 14 15 19 4 1 8

6 9 3 5 10 2 2 6 12 19 15 17 12 1 16 16 4 5 2 1

8 11 5 6 11 4 3 8 15 2 1 5 3 4 17 4 6 8 3 2

9 16 8 7 12 5 4 9 1 4 2 6 7 10 1 18 12 11 5 4

11 1 9 8 14 7 8 10 5 9 3 7 8 11 2 1 2 12 7 5

12 6 10 9 1 8 9 11 7 11 5 8 10 16 3 5 13 13 8 6

13 7 11 11 7 9 10 12 11 13 8 9 13 17 5 8 14 16 11 10

14 8 13 12 9 10 15 18 13 15 9 11 14 18 8 10 15 17 13 11

15 10 17 14 13 14 16 20 14 1 11 12 17 19 11 12 17 18 14 17

16 12 18 15 15 18 20 1 16 8 16 13 18 20 15 14 18 20 15 18

17 17 19 17 18 19 5 4 17 14 17 14 19 2 13 17 20 1 17 19

18 4 20 18 6 3 6 7 20 16 20 16 20 6 18 19 5 9 18 20

20 14 1 10 17 6 11 15 9 17 13 2 15 7 19 20 8 14 6 14

2 20 2 16 19 17 12 16 19 20 14 3 16 8 20 13 10 15 9 15

0

5

10

15

20

0 5 10 15 20

Queue(s)

M
e
s
s
a
g
e
(s

)

(d) A2 sorted by priority 20x20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

0

5

10

15

20

0 5 10 15 20

Queue(s)

M
e
s
s
a
g
e
(s

)

(e) A3 arrival order 20x20

3 2 4 1 3 11 1 2 2 3 4 1 1 5 4 2 1 6 10 3

7 3 6 13 4 12 2 3 3 5 7 10 2 9 7 3 3 7 12 7

10 5 7 20 5 13 7 5 4 6 10 15 4 12 9 4 6 10 19 8

19 9 12 2 8 15 13 13 6 7 12 17 5 13 10 6 7 19 20 9

1 11 15 4 10 16 14 14 8 10 15 18 6 15 12 7 9 2 1 12

4 13 16 6 11 20 17 17 10 12 18 19 9 1 16 9 11 3 2 13

5 15 3 7 12 1 18 8 15 18 19 20 11 3 17 11 12 4 3 16

6 16 5 8 14 2 19 9 18 19 1 4 12 4 2 15 16 5 4 1

11 18 8 12 16 5 4 10 1 4 2 6 3 10 3 16 19 11 7 4

12 19 9 14 20 7 8 12 5 9 3 7 10 14 5 1 2 12 8 5

13 1 10 15 2 8 9 18 7 11 5 8 13 17 6 5 4 13 11 6

14 6 11 17 9 9 10 19 11 13 6 9 14 18 8 8 13 16 13 10

15 7 13 18 13 10 15 20 12 15 11 11 17 19 11 12 15 18 15 17

16 8 14 19 15 14 16 1 16 1 16 12 18 20 14 14 17 20 16 18

18 12 19 3 1 18 20 6 17 2 17 14 19 6 15 18 18 1 17 19

20 17 20 5 6 19 3 7 20 14 20 16 7 11 1 19 20 8 18 2

2 4 17 9 7 3 6 11 9 8 8 5 8 16 13 20 10 9 5 11

8 10 18 10 18 4 5 16 13 16 9 13 20 2 18 10 14 14 14 20

9 14 1 11 19 6 11 4 14 17 14 2 15 7 19 17 5 17 6 14

17 20 2 16 17 17 12 15 19 20 13 3 16 8 20 13 8 15 9 15

0

5

10

15

20

0 5 10 15 20

Queue(s)

M
e
s
s
a
g
e
(s

)

(f) A3 sorted by priority 20x20

Figure 4.5: Twenty queues with 20 messages from A1, A2 and A3

The class MarkovMsgGeneratorInputPattern takes the user priority sequence in
the column ”priority” to generates a probability matrix and after creating an array of

32

Figure 4.6: Generic Markov chain

messages following the Markov chain model. This option can be seen as the opposite
of the previous Markov function since in this case, the user gives the sequence of
priorities messages and the algorithm generates an array from it. While in the first
Markov option the user needs to define the probability matrices in order to obtain
an array from it. Therefore, a use case for this option could be the use of data from
past tactical exercises to experiment with them in another context.

Similarly, the class ProbSequenceOfMsgGenerator generates an array with the
messages to send according to the probabilities indicated in the GUI table. So
the user can create a scenario where the messages he wants are more likely to be
generated according to their needs, thus simulating the greater or lesser use of one
service or another in the tactical field. Or, on the contrary, a case in which all
services are used equally. The operation of the algorithm is based on a discrete
distribution of probabilities. Let consider a discrete random variable X and u0,
u1,... i be the values it can take (message type), the associated formula is therefore:∑

i

P (X = ui) = 1 (4.3)

4 5 6 7 8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

PDF of Uniform Distribution with a = 5, b = 7

x

D
e
n
s
it
y

(a) Uniform Distribution

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

PDF of Gaussian Distribution with µ=0, σ=1

x

D
e
n
s
it
y

(b) Gaussian Distribution

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

PDF Exponential Distribution with λ=1

x

D
e
n
s
it
y

(c) Exponential Distribu-
tion

0 5 10 15 20

0
.0

0
0
.0

5
0
.1

0
0
.1

5

PDF Poisson Distribution with λ= 6

k

D
e
n
s
it
y

(d) Poisson Distribution

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

PDF Log−normal Distribution with µ= 0, σ= 1

x

D
e
n
s
it
y

(e) Log-normal Distribution

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

PDF Pareto Distribution with α= 1, β= 1

x

D
e
n
s
it
y

(f) Pareto Distribution

Figure 4.7: Time distributions

33

Finally, the different mathematical distributions are generated by the class Ran-
domNumberGenerator to use them as time-window intervals. The generated arrays
contain a sequence of numbers (in seconds) that behaves as a time-window between
each sequence of message sent. The available distributions are defined as follows:

• Uniform distribution where a and b are the minimum and maximum bound-
aries and the user can configure their values. Figure 4.7a shows a possible user
setup.

Uniform distribution:f(x) =

{
1
b−a a ≤ x ≤ b,

0 x < a or x > b.
(4.4)

• Gaussian distribution where µ is the mean, σ the standard deviation and σ2

the variance. The user can modify the values of both mean and standard
deviation as for example in Figure 4.7b, with a mean of 0 and an standard
deviation of 1.

Gaussian distribution:f(x|µ, σ2) =
1

σ
√

2π
e−(x−µ)2/2σ2

(4.5)

• Exponential distribution where λ is the rate parameter whose value can be
changed in the GUI. Figure 4.7c represents an exponential distribution with
λ 1.

Exponential distribution:f(k;λ) =

{
e−λλk

k!
x ≥ 0,

0 x < 0.
(4.6)

• Poisson distribution where k is the number of times an event occurs in an
interval and the average number of events in an interval is λ. The mean can
be adjusted, Figure 4.7d uses a distribution with a mean of 6.

Poisson distribution: f(k;λ) =
e−λλk

k!
(4.7)

• Log normal distribution where µ and σ are the mean and standard deviation
of the logarithm. By default our tool offers a distribution with mean and
standard deviation of values 0 and 1 respectively as it can be seen in Figure
4.7e.

Log-normal distribution:f(x|µ, σ2) =
1√

2πσx
e−(log(x)−µ)2/2σ2

(4.8)

• Pareto distribution where α and β are the scale and shape parameters. By
default our tool offers a distribution with scale and shape of value 1 as it can
be seen in Figure 4.7f.

Pareto distribution:f(x|α, β) =

{
βαβ

xβ+1 if α ≤ x <∞ α, β > 0
0 else

(4.9)

4.4 Final remarks

In this chapter, we summarized the methodology we used to design the Message
Benchmark tool as well as its functionality and the environment used to test it. Our
tool allows establishing parameters in terms of the number of sequences, number,
and size of messages, priority pattern and time-window pattern. In order to evaluate
the use of it, in Chapter 5, we defined three use cases, out of 36 possible setups, to
show the results we are able to obtain in a VHF network.

34

Figure 4.8: UML class diagram for the Message Benchmark tool

35

Chapter 5

Experiments and Results

This research explores different ways of generating message sequences with QoS
restrictions to test their impact on tactical middlewares. To achieve it, two types of
experiments are carried out, with and without a tactical middleware (i.e. the TSI
implemented during the TACTICS project described in Chapter 3. Both analysis
use tree different combinations of our tool based on the following experiments: (1)
sending just one large message, (2) a burst of messages without a predefined time-
window, and (3) a burst of messages with time-window distribution. Notice that our
tool is able to generate a combination of 36 different setups of messages using the
features described in Chapter 4, and also our tool is generic enough to be used in
different types of networks. However, we choose three combinations to show that we
achieved the goal of stress the network and the store-and-forward mechanism within
the TSI tactical middleware. Complementing, we performed simulations creating
sequences of QoS-constrained messages using the priority patterns mentioned in
Chapter 4. The goal was to check its correct functioning before sending them to the
tactical network.

5.1 Experiments definition

The experiments were done in two different scenarios, with and without the use
of the tactical middleware TSI. First, we fixed the radio datarate at 9.6 Kbps in
both scenarios. Then, in the first scenario, without middleware, the system does
not have the packet handler service (described in Chapter 3) and it is a simple case
where a source sends a message through the publish/subscribe model implemented
by a notification broker (unicast mode). The goal of this first case is to evaluate
the behavior of the system and identify the set of combinations able to stress the
system in order to break it (i.e. overflow the radio buffer). On the other hand, the
middleware scenario seeks to test the performance bounds of the TSI.

Three different experiments are carried out in this section differentiated with
the colors red, green and blue respectively, the configuration setups and graphs are
described below and summarized in Table 5.1.

• Experiment 1 (red): For the first experiment, our tool generates only one
message. Therefore we choose a sequence of one message of 1000 KB. The
priority mode selected is by default because in this case there are not sev-
eral messages that have to compete in the message queue. The time-window
between messages is set to zero seconds.

36

Experiment Sequences Messages Size Priority Time-window

1 1 1 1000 KB By default 0 secs
2 1000 1 1 KB By default 0 secs
3 1000 1 1 KB By default Exp - mean 5 s

Table 5.1: Set up for the three experiments

• Experiment 2 (green): For the second experiment, our tool generates 1000
messages. Therefore, we choose one thousand sequences of one message of 1
KB. The priority mode selected is also by default. The time-window is set to
zero seconds to simulate a burst of messages, this case could emulate situations
as talk outburst which might result from VoIP applications [58]. With the
course of a conversation the activity of the user can be random, when a burst
occurs depending on the compression codec used, messages can be generated
periodically with different speeds and sizes depending on the type used.

• Experiment 3 (blue): In the third experiment, our tool also generates 1000
messages. The configuration is the same as the previous experiment except for
the use of a time-window based on an exponential distribution of mean five.
This experiment simulates a more favorable case for the network compared to
the previous two since it is not a burst mode.

The generation of scenarios with different types of sequences allows the accom-
plishment of the following tasks. Firstly, we will be able to evaluate the evolution
of the radio buffer as a function of time to check the correct operation of our tool
in terms of sequence and number of messages. In addition to the accuracy in the
handling of time-windows. Secondly, this helps to ascertain the possible loss of
packets and information through the use of the UDP transport service implemented
by the publish/subscribe broker and the tactical middleware. Thirdly, this serve to
compare the use or absence of middlewares networks and the performance of the
TSI middleware.

5.2 Experimental Results

In this section we present and discuss the quantitative the results of our set of exper-
iments. The graphs shown in Figure 5.1 are the results of the radio buffer occupancy
as a function of time and the comparison between the number of IP packets together
with the delay between IP packets sent and received . The radio buffer occupancy
is gathered through a Java servlet that monitors its status according to a refreshing
time, in the case of the experiments reported here it was set to 2 second. The IPI
represents the time between IP packets that were developed in [1] to shape the data
flow according to the current network conditions. If the conditions are good (e.g.
there is a high datarate) the IPI will be small and vice-verse. Figure 5.1 plots both
scenarios without (a) and with the tactical middleware (b).

37

1
2

3

0 2000 4000 6000

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Time (sec)

R
a
d
io

 B
u
ff
e
r

U
s
a
g
e
 (

%
)

Experiment 1 2 3

(a) Radio buffer without middleware

1
2

3

0 1000 2000 3000

0

5

10

15

0

5

10

15

0

5

10

15

Time (sec)

R
a
d
io

 B
u
ff
e
r

U
s
a
g
e
 (

%
)

Experiment 1 2 3

(b) Radio buffer with TSI

Figure 5.1: Radio buffer over time

In the first scenario, without middleware in Figure 5.1a, both experiments 1 and
2, the radio buffer reaches its maximum capacity giving rise to overflow as can be
observed in the plot. Therefore it can be said that when sending large traffic in
”burst” mode the radio is stressed. On the other hand, when a time-window is
set, the radio has enough time to store and transmit the messages. It can also be
observed the duration of each of the three experiments, the last being the one that
lasts the longest using a time-window between messages following the exponential
distribution.

In the second scenario, Figure 5.1b, the buffer occupancy stays below 15% due
to the store-and-forward mechanisms within TSI. The operation of this algorithm
causes an oscillation around the 10% in the first two experiments while in the third
one it is not necessary, due to the radio itself can deal with that amount of informa-
tion (i.e. the QoS-constrained dataflow was creating a datarate within the network
capacity). The threshold of 10% is not a fortuitous occurrence, since in [23] it was
decided to set that percentage.

The Figure 5.2a shows that due to the fastest possible sending of messages, the
highest density is accumulated in values close to 100% until reach the total buffer
capacity in the case of the first two experiments while in the third experiment the

38

1
2

3

0 25 50 75 100

0.000

0.005

0.010

0.015

0.000

0.005

0.010

0.015

0.020

0

1

2

3

Radio Buffer Usage (%)

D
e
n
s
it
y

Experiment 1 2 3

(a) Radio buffer density without middleware

1
2

3

0 5 10 15

0.00

0.03

0.06

0.09

0.00

0.03

0.06

0.09

0.12

0.0

0.5

1.0

1.5

2.0

Radio Buffer Usage (%)

D
e
n
s
it
y

Experiment 1 2 3

(b) Radio buffer density with TSI

Figure 5.2: Radio buffer density

density is centered around 0% of buffer usability. This is due to the fact that the
radio has to deal with a large amount of information in a short period overflowing
while in the third we see the buffer underflow. On the other hand, Figure 5.2b
shows a density around 9% and another peak in 0% for experiments 1 and 2. The
density of buffer usage in experiment 3 maintain around 0%, showing also the buffer
underflow. It is also interesting to mention the Gaussian distribution around the
threshold for experiments 1 and 2 of scenario two.

It is necessary to consider the differences between the two graphs in Figure 5.1
in relation to the dimensions in the percentage and density axis of the radius buffer
used as they cannot be directly compared. Comparing both scenarios it can be seen
that the buffer control algorithms in TSI work correctly in unicast mode avoiding
radio overflow. As a consequence we can claim that no information is lost during
communication with data sets of up to 1000 KB (experiment 1) and that it can
probably handle longer sequences. This is essential when dealing with situations
where bottleneck might occur. It has also been verified that the variables related
to the size and time-window of our tool work as expected. Demonstrating that the
smaller the time-windows the higher the stress for the store-and-forward mechanism.

The first scenario presents IP packet loss during transmission in experiments 1
and 2 as plotted in Figure 5.3. This fact confirms the above mentioned concerning
radio overflow as the number of IP packets sent does not coincide with those received
in the first two experiments. Figure 5.3a illustrates the higher proportion of packets
lost when burst mode involves a large number of small messages versus a large
message. The fragmentation carried out in the transport layer is different according
to the type of traffic, the 1000 KB message is divided into 384 packets (experiment
1) while the 1000 messages of the second experiment are divided into about 900
packets. On the other hand, in experiment 3, which does not use burst mode, each
1KB message fits into a single UDP packet, so we could see 1000 1KB messages.

The second scenario, like the first one, presents a curious fact in the number
of packages delivered and received, see Figure 5.3b. All experiments sent and re-

39

251
348

545

904
10001000

0

250

500

750

1000

1 2 3
Experiment

N
u
m

b
e
r

o
f
IP

 P
a
c
k
a
g
e
s

Node Source Target

(a) IP packets without middleware

348348

859859

10001000

0

250

500

750

1000

1 2 3
Experiment

N
u
m

b
e
r

o
f
IP

 P
a
c
k
a
g
e
s

Node Source Target

(b) IP packets with TSI

Figure 5.3: IP packets sent and received

ceived the same number of IP packets as expected since the buffer is not flooded.
But experiment 2 highlights the fact of fragmenting the 1000 messages into a lower
number of packets. This is due to the use of GZIP, this open source software com-
presses all messages in the message queue before splitting into packets. It is based
on the Deflate algorithm, which is a combination of LZ77 and Huffman encoding
[59]. Therefore there are more compression options in large messages than in small
ones and therefore more possibilities of assembling several into one single fragment.
As experiment 3 offers enough time to send messages without saturating the mes-
sage queue the result is 1000 messages while in burst mode (experiment 1 and 2)
the number of packets is less than the number of messages.

1 2 3

Source Target Source Target Source Target
0.0

0.5

1.0

1.5

2.0

Node

IP
 P

a
c
k
a
g
e
s
 p

e
r

S
e
c
o
n
d

Experiment 1 2 3

(a) IP packets without middleware

1 2 3

Source Target Source Target Source Target

0.5

1.0

1.5

Node

IP
 P

a
c
k
a
g
e
s
 p

e
r

S
e
c
o
n
d

Experiment 1 2 3

(b) IP packets with TSI

Figure 5.4: IP packets sent and received per second

The graphs in Figure 5.4 shows the rate of packets sent per second. Since they
are evaluated in the same period of time, the sending and receiving rates will be
significantly different in case of communication losses. Moreover, the compression
also reduces the number of IP packets send per second. We can see in Figure 5.4a
(in experiment 1 and 2) a gap between sources and targets, as a result of a buffer
overflow and the message compression. While the IP packets per second are almost
the same in experiment 3. In order to see the same behavior of scenario 1, but
without packages loss, the same test is repeated in the second scenario. Figure 5.4b
shows almost the same IP packets rate between sources and targets, but with a
small difference among those experiments. We also complement the discussion by

40

Source Target

1
2

3

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0

100

200

300

0

250

500

750

0

250

500

750

1000

Time (sec)

N
u
m

b
e

r
o

f
IP

 P
a

c
k
a

g
e

s
Experiment 1 2 3

(a) IP packets without middleware

Source Target

1
2

3

0 1000 2000 3000 4000 0 1000 2000 3000 4000

0

100

200

300

0

250

500

750

0

250

500

750

1000

Time (sec)

N
u
m

b
e

r
o

f
IP

 P
a

c
k
a

g
e

s

Experiment 1 2 3

(b) IP packets with TSI

Figure 5.5: IP packets sent and received over time

adding that these values depend on the capacity of the network to send messages to
the pipeline.

Looking at the number of IP sent and received in a time series, see Figure 5.5,
we can observe the difference of line sizes and its inclinations. Comparing the sizes,
it is clear to see that we lose packages just in experiments 1 and 2 of scenario 1. On
the other hand, the costs to receive all packages sent reflect on the increase of the
time (inclination of the curve) among each scenario.

The Figures 5.6a and 5.6b show the value of the IPI over time. Comparing
experiment 1 without and with middleware it can be seen how the time between
IP packets is fixed and close to zero in the first case (since the source tries to send
the information as fast as possible) and how its value varies in the second case.
This demonstrates, on the one hand, the constant and problem-free transmission
through a Fast Ethernet interface (100 Mb/s) without any kind of intervention to
avoid overflow and on the other hand the attempt on the part of TSI to adapt
the packet flow according to network conditions to avoid network congestion. Also,
experiment 2 presents an interesting peak in both scenarios. This peak can be related
to the burst mode of many messages but needs to be tested in more experiments
to analyze their behavior. Therefore it is proposed as a future work with which to
improve and understand this fact. Even so, it is possible to observe once again the
middleware participation when avoiding bottlenecks by comparing the zones where
the Figure 5.6b curve fluctuates against the flat zones of Figure 5.6a. Experiment 3
presents a similar behaviour in both scenarios and its value varies according to the
time-window between sequences, the differences between the both are not clear in
this case.

To summarize the results analyzed above it can be stated that the use of middle-
ware in tactical network is essential to prevent congestion and loss of information.
Comparing both scenarios it can be seen that the use of middleware ensures a ro-
bust transmission by sending and receiving the same number of packets. In terms of
time spent transmitting and receiving IP packets, the TSI graphs show more time
in order to avoid loss of packets. TSI, in particular, shows a good performance for
large messages (1000 KB) and rush traffic. The effect of the overflow on the packet
transmission and reception rate and the IPI parameter has been verified. As well as
the behavior of message compression (GZIP) depending on the size of the messages.

41

Source Target

1
2

3

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

Time (sec)

In
te

r−
P

a
c
k
a
g
e
 I
n
te

rv
a
l
(s

e
c
)

Experiment 1 2 3

(a) IPI without middleware

Source Target

1
2

3

0 1000 2000 3000 4000 0 1000 2000 3000 4000

0

20

40

0

20

40

0

20

40

Time (sec)

In
te

r−
P

a
c
k
a
g
e
 I
n
te

rv
a
l
(s

e
c
)

Experiment 1 2 3

(b) IPI with TSI

Figure 5.6: IPI over time at both source and target

5.2.1 Simulations: creating patterns of QoS-constrained dataflows

In this section, we discuss simulation results creating different patters of message
priority using the stochastic models implemented in our tool. The set up we used
for each simulation is summarized in Table 5.2. The probability matrices used
in Markov pattern, first row of Table 5.2, are defined in 5.1. The other patterns
were created using different approaches. In the following Figures 5.7 to 5.12 the
differences between the various priority patterns are illustrated. We generated an
array of 100 messages with priorities from 0 to 3 to visually represent the random
result of patterns and the messages ordered after processing. In both figures, the
left column is shown the chain of unsorted messages while the right column shows
them sorted by priority.

A1



1 2 3 4

1 .05 .05 .5 .4

2 .05 .05 .5 .4

3 .05 .05 .5 .4

4 .05 .05 .5 .4

A2



1 2 3 4

1 .2 .2 .45 .15

2 .2 .2 .45 .15

3 .2 .2 .45 .15

4 .2 .2 .45 .15

A3



1 2 3 4

1 .35 .4 .15 .1

2 .35 .4 .15 .1

3 .35 .4 .15 .1

4 .35 .4 .15 .1

 (5.1)

42

Pattern N° of priorities Priority Probability N° of generated messages

Markov 4 Chain (0,1,2,3) - 100
Msg behaviour 4 Chain (0,1,2,3,0,1,0,2) - 100
Msg prob. 4 Chain (0,1,2,3) 25 % 100
By default 4 Chain (0,1,2,3) - 100

Table 5.2: Configuration of the stochastic models used to generate the plots

Figures 5.7 to 5.9 represents those patterns based on Markov (probability ma-
trices 5.1). As is introduced in Chapter 4, the darker the color of the ordered
message, the higher priority it will have in the message queue and each matrix seeks
to represent from a more stable scenario (A1) to the most chaotic (A3).

One method to evaluate the degree of stability of a scenario is to count the
number of flash (black squares) priority messages present in the sequence, as they
are the most likely to cause problems in the message queue. In Figures 5.7a and
5.7b it can be observed that using matrices with significant differences between the
probabilities of change of state, the scenarios are calm since the number of messages
with high priority is not high. The opposite effect is seen in Figures 5.9a and 5.9b
where the probabilities of the generator matrix used are higher and the message chain
shows up to 37 flash priority messages. The intermediate point of view is shown in
Figures 5.8a, 5.8b where the number of high priority messages is 23. Notice that
these sequences can vary up to

(
100
4

)
= 3.921.225 combinations, allowing our tool

to generate an ever-change message pattern.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(a) Unsorted: blue sequence

13 18 26 29 45 85 94 98 24 28

48 74 83 2 3 4 6 7 8 12

16 19 20 21 23 25 27 30 31 33

36 38 39 40 41 42 47 49 54 55

57 58 60 61 62 63 66 67 68 69

70 75 78 79 82 84 86 87 88 90

92 93 95 99 100 1 5 9 10 11

14 15 17 22 32 34 35 37 43 44

46 50 51 52 53 56 59 64 65 71

72 73 76 77 80 81 89 91 96 97

Message(s)

M
e
s
s
a
g
e
(s

)

(b) Sorted: blue sequence

Figure 5.7: Sequence of messages following the priority patterns A1

The behavior of the rest of the priority patterns offered by our tool also depends
on the configuration and scenario desired by the user, but they use different models.
The pattern based on the priorities offered by the user, Figures 5.10a and 5.10b,
show in our simulations a behavior similar to that of Figures 5.7 to 5.9, since it also
relates to Markov in the generation of messages. However, this one uses the message
chain provided by the user to build the probability matrix and then generate the
sequence while the previous one directly makes use of the probability matrix. In
this way it is possible to analyse, for example, the effect of relaunching operations

43

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(a) Unsorted: green sequence

8 13 18 19 20 24 26 28 29 33

45 48 54 62 74 78 83 85 87 88

93 94 98 2 7 23 25 27 36 40

42 58 60 66 75 79 82 90 92 99

3 4 5 6 9 10 12 14 15 16

21 22 30 31 35 37 38 39 41 43

44 46 47 49 53 55 57 61 63 67

68 69 70 71 72 73 77 80 81 84

86 91 95 96 100 1 11 17 32 34

50 51 52 56 59 64 65 76 89 97

Message(s)

M
e
s
s
a
g
e
(s

)

(b) Sorted: green sequence

Figure 5.8: Sequence of messages following the priority patterns A2

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(a) Unsorted: red sequence

2 7 8 13 18 19 20 23 24 26

27 28 29 33 36 40 42 45 48 54

58 62 74 75 78 79 82 83 85 87

88 90 92 93 94 98 99 3 4 5

6 9 10 12 14 16 21 22 25 30

31 37 38 39 41 44 46 47 49 53

55 57 60 61 63 66 67 68 69 70

71 72 73 77 80 81 84 86 95 96

100 1 15 17 32 34 35 43 64 89

91 97 11 50 51 52 56 59 65 76

Message(s)

M
e
s
s
a
g
e
(s

)

(b) Sorted: red sequence

Figure 5.9: Sequence of messages following the priority patterns A3

already experienced in a new network.
The probability pattern, showed in Figures 5.11a and 5.11b, may behave one

way or another depending on the configured values, if a high probability is set to
flash priority messages the scenario will be more challenging and vice-versa. Based
on observations of real scenarios the user can manage these probabilities to suit his
needs. For instance, the user can simulate an evacuation situation after a natural
disaster by setting a high probability for messages from the medical service (e.g. 60
%) and readjusting the rest of the services to lower priorities (e.g. OAS 10 %, video
10 %, picture 7 % and FFT 3 %).

Finally, Figures 5.12a and 5.12b exhibit the default pattern that allows creating
a situation modifiable by the user simply by varying the value of the parameters
in the GUI. The user is free to define the sequence of messages he wants based on
artificial situations as well as previous experiences. The Figure 5.12 represents a
situation in which a message of each priority is generated sequentially but the user

44

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(a) Unsorted: priority behavior chain

3 5 7 11 15 17 21 23 25 29

33 35 39 41 45 49 53 57 61 63

65 67 71 75 77 81 83 85 87 91

95 99 4 6 8 12 16 18 22 24

26 30 34 36 40 42 46 50 54 58

62 64 66 68 72 76 78 82 84 86

88 92 96 100 1 9 13 19 27 31

37 43 47 51 55 59 69 73 79 89

93 97 2 10 14 20 28 32 38 44

48 52 56 60 70 74 80 90 94 98

Message(s)

M
e
s
s
a
g
e
(s

)

(b) Sorted: priority behavior chain

Figure 5.10: Sequence of messages following the priority patterns based on Markov
Chain

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(a) Unsorted: priority message prob. chain

5 12 13 26 34 40 45 50 59 60

65 71 72 79 85 86 87 92 97 99

4 6 8 11 14 16 21 23 25 28

29 30 35 41 42 47 52 53 61 62

67 69 70 75 77 89 95 96 1 3

7 10 15 17 18 19 22 27 31 33

38 46 48 54 55 57 66 74 83 88

2 9 20 24 32 36 37 39 43 44

49 51 56 58 63 64 68 73 76 78

80 81 82 84 90 91 93 94 98 100

Message(s)

M
e
s
s
a
g
e
(s

)

(b) Sorted: priority message prob. chain

Figure 5.11: Sequence of messages following the priority patterns defined by message
probability

could emulate, for example, one in which three out of four messages are of maximum
priority to try to challenge the performance bounds of a tactical sytem.

45

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Message(s)

M
e
s
s
a
g
e
(s

)

(a) Unsorted: priority by default chain

1 5 9 13 17 21 25 29 33 37

41 45 49 53 57 61 65 69 73 77

81 85 92 96 100 2 6 10 14 18

22 26 30 34 38 42 46 50 54 58

62 66 70 74 78 82 86 89 93 97

3 7 11 15 19 23 27 31 35 39

43 47 51 55 59 63 67 71 75 79

83 87 90 94 98 4 8 12 16 20

24 28 32 36 40 44 48 52 56 60

64 68 72 76 80 84 88 91 95 99

Message(s)

M
e
s
s
a
g
e
(s

)

(b) Sorted: priority by default chain

Figure 5.12: Sequence of messages following the priority patterns defined by default

5.3 Final remarks

The experiments carried out aimed to evaluate the functionalities of our tool that
generates QoS-constrained dataflows and seeks to test the store-and-forward mech-
anisms of the tactical system. The performance bounds of the tactical system have
been stressed with three different types of traffic. The first consists of a large mes-
sage (1000 KB) and the next two of 1000 small messages (1 KB each). In turn,
these last two experiments sent in burst mode and with a time-window based on
an exponential distribution, respectively. Finally, simulations with different priority
patterns are shown in order to demonstrate that it is possible to use them in future
experiments. With these experiments, we have demonstrated the negative influence
of overflow on the radio buffer and the IP packet rate. And how the middleware acts
in this case to deal with congestion, among other ways, introducing a time between
IP packets to give the system enough time to process the information. We can also
say that we achieved our goal by designing this tool.

46

Chapter 6

Conclusion

The design of real scenarios in the field of tactical networks has been of interest
over the years as it allows to analyze, improve and test the tactical systems that
will be used in the battlefields. This challenge can be divided into two distinct
problems, the changing behavior of users and the constantly changing conditions of
the network. Focusing on the user application layer, the current literature shows a
lack of randomness in the traffic flows used in the experiments. In this thesis we have
implemented a tool called ”message benchmark” that generates QoS-constrained
data-flows to simulate the exchange of information between different command and
control services using the publish/subscribe messaging pattern. For this purpose,
a GUI was developed to facilitate the modification of parameters related to the
messages, their priorities, and time-windows and simulate different scenarios. The
implementation is based on the use of mathematical distributions to introduce the
element of randomness in terms of priority and time-window of the messages that
are sent with the publish/subscribe pattern. Thus, it is possible to simulate, for
example, the exchange of VoIP data by configuring the tool to send a chain of a big
number of messages in a short period of time. In this way, by analyzing the effect
of the traffic injected into the network, the store-and-forward- mechanisms can be
evaluated.

The experiments have been carried out in two scenarios, the first of them to test
the operation of the tool without the middleware TSI and the second of them with
the middleware. Both scenarios consisted of three tests in which a message of 1000
KB was sent without time-window, 1000 messages of 1 Kb without time-window
and 1000 messages of 1KB with time-windows based on an exponential distribution
of mean five. With these experiments, we have tested how overflow and the type of
traffic transmitted (depending on size and delivery time) affect the radio buffer and
IP packet rate. Secondly, we also studied how the middleware acts in these cases to
deal with congestion concerning the radio buffer and the IPI introduced.

As a future development of the present thesis, the evaluation of the store-and-
forward mechanisms can be carried out using the message benchmark tool that
simulates the user layer with the work done in [23] that simulates ever-changing
network conditions. In order to obtain results of the problem A|B mentioned earlier
in the introductory chapters. Besides, as proposed in Chapter 5, more experiments
can be performed to understand the peak shown by the IPI in Figure 5.6 in the
second experiment. Finally, another line of work can be to scale the testbed using
networks with a greater number of nodes. In this case, a potential improvement

47

would be to centralize our tool to control and synchronize the traffic flow of each
node from a single management node.

48

Appendix A

Ethical, economic, social and
environmental aspects

A.1 Introduction

The project designed for this thesis is located within the sectors of telecommunica-
tions and telematics engineering as it is directly related to tactical networks. This
work, among other objectives, seeks to promote the experiments and development
of middlewares and other research areas providing an environment close to reality
in tactical networks. The implementation of a service to create a sequence of QoS-
constrained messages and test store-and-forward mechanisms in tactical networks
contributes to the scientific community and society. Other groups of interest related
to the project are developers, private and public companies. Both companies look-
ing to test their middleware or networks and governments interested in improving
their tactical systems can benefit from this service.

As it is indicated in the Introduction chapter, the organizational and strategic
scope in which this work is placed belongs to the European TACTICS project.
Specifically in the expansion of the work done by Lopes et al. [11] in the area
of analysis and testing of tactical middlewares based in web services. The main
institution involved is the Fraunhofer Institute for Communication, Information
Processing and Ergonomics (FKIE).

In relation to the life cycle, the first phase consisted of a preliminary study
of related works and the definition of the problem to be solved. Afterwards, the
requirements and scope are described to launch a hypothesis and give way to the
design. In this phase, the tools to be used are decided and the implementation of the
prototype begins. After this, tests and experiments are performed to analyse errors
and improvements and check whether the hypothesis is erroneous or not. Finally,
the cycle is repeated in the case of new proposals or decisions that can be improved
and, in the case of success, the maintenance phase is carried out.

A.2 Description of relevant impacts related to the

project

In this section the most relevant repercussions of the project are analysed in the eth-
ical, social, economic and environmental context. The evaluation seeks to describe

49

the main impacts (positive and negative), problems or aspects previously identified
as related to the project. The relevant influences are categorised considering the
area to which they belong, therefore we can distinguish:

• Technology: the project will improve future experiments related to the tacti-
cal networks. This work allows other researchers to use a real scenario, improv-
ing the quality of their final proposals and as a consequence the development
of better military networks.

• Social: in terms of social issues and as a direct result of the one mentioned in
technology, this will make it possible to work in better conditions to the forces
involved in natural disasters or battlefields. In addition to military environ-
ments, this proposal can be used in other networks related to the exchange of
messages with different priority. The sectors benefiting from this are the forces
involved in military operations, people requiring their help (e.g. in a natural
disaster) and scientists and developers of similar solutions or proposals. As a
negative impact, there may be a group positioned against the improvement of
tactical networks for war or territorial purposes.

• Economic: the economic impact of the work implies significant savings in
costs since it is not necessary to carry out a deployment of forces to perform the
experiments in the user layer. The approximate budget for the deployment of
an individual soldier was approximately 40.441 ein 2002 (considering training,
personnel costs and salary) [60]. Furthermore, the set up of the testbed can
be done in two different ways as experienced in this Master Thesis: (1) with
military radios, switches and real nodes or (2) in a virtualized network. Both
solutions suppose a lower cost than the use of forces, requiring an approximate
investment of 143.222 e(see Appendix B) in the first case and some computers
(e.g. three) without the need of high technical specifications in the second case.

• Environmental: the main environmental impact is the energy consumption
related to the radios, nodes and computers used in the laboratory. The bat-
teries of the radios have to be replaced and recharged every 24 hours ap-
proximately and they are made of lithium-ion. The manufacture of batteries
with chemical products together with their high consumption, can pollute and
harm the environment. In addition they contain a flammable electrolyte under
pressure.

• Legal: any project involved in tactical networks must ensure security in the
processing of information. The consequences of loss of information or intrusion
can cause serious consequences. In this work some messages are prioritized
over others in order to speed up their processing and response. But security
depends mainly on the sender and its use, in this case, of SOAP-SEC with
web services.

• Operational: in the service there has not been designed any system that
protect the messages as the transport protocol used in tactical networks is
normally UDP and it does not ensure the arrival of them.

As a conclusion after analyzing the impacts of the project, the most significant
are those related to the areas of economy and environment. These are discussed in
the following subsection.

50

A.3 Detailed analysis of the main impacts

The details related to the economic budget are broken down in Appendix B. As can
be observed, most of the costs related to materials are due to the use of military
radios, representing 94,5 % of the total. Comparing the total price of the project
calculated in Appendix B of 143.222 ewith the estimated price per soldier according
to CNBC, this budget would only cover the contract of three soldiers to which would
have to be added the cost of military vehicles and radios. This shows the savings
involved in carrying out this type of work that seeks to create real scenarios compared
to carrying out experiments in real fields.

The environmental impact of the project lies mainly in the use of lithium-ion
batteries in military radios. The huge demand for this type of batteries (used in
electronic devices and the automotive industry) at a global level causes the exhaust of
natural resources because of intense drilling operations to extract the lithium. Also,
the chemical used to extract the lithium from the ground is capable of infiltrating
nearby rivers, streams and water supplies. These batteries need to be recharged
every 24 hours approximately with the electrical consumption that this supposes.
They can overheat to the point of exploding because they are made of flammable
materials that make them prone to detonations or fires. This makes it essential to
provide electronic circuits that control their temperature at all times.

A.4 Conclusions

Taking into account the aspects mentioned above it can be observed that the most
important impact of the project is the economic one, but at the same time the
environmental one must be considered. The cost savings are significant but also the
consumption of the radios added to nodes and computers supposes a high energetic
consumption.

51

Appendix B

Economical budget

This annex summarizes the costs associated with the completion of this thesis. It
then covers aspects associated with materials, professional fees and total costs.

B.1 Cost of materials

The cost associated with the materials is shown in Table B.1. This table lists the
hardware used during this investigation such as laptos, radios and network switches.
The software packages used includes RStudio, Eclipse IDE, Java SDK and Linux as
operating system, which are open source.

Material Unit cost (e) Total cost (e)

Laptop + Software 1.500 e 3.000 e
PR4G Radio 60.000 e 120.000 e
Fanless Barebone Router 144 e 288 e
Uniquiti Tough Switch 85 e 170 e
TOTAL 123.458 e

Table B.1: Costs of materials

B.2 Professional fees

This section considers expenses related to professional fees involved in the develop-
ment of the project. The total cost of the fees is shown below in Table B.2.

Description Hours spent (h) Salary (e/h) Total cost (e)

Engineer 810 h 20 e/h 16.200 e
TOTAL 16.200 e

Table B.2: Professional fees

52

B.3 Total costs

The total expenses of the project are compiled in Table B.3 and are the sum of the
two previous ones. It includes the salary taxes standardized in Germany.

Description Costs (e)

Cost of materials 123.458 e
Professional fees 19.764 e
TOTAL 143.222 e

Table B.3: Total costs

53

Appendix C

Scripts

Data: Desired number of messages, time-window sequence and topic
characteristics.

Result: This script receives the topic characteristics and user preferences
and launches the service.

initialization;
read the number of messages, time-window and topic characteristics;
Function sendSelectedRows(selectedRow):

This function gets the number of desired intervals and the time window
and generates a LinkedHashMap to store the messages. Then it sends
the sequence by creating a unique identifier for the publisher (using the
host name), sending notifications for the topic, creating a
NotificationBroker proxy and sleeping timeWindows ms.;

End Function
Algorithm 1: Tactics Script

54

Data: Probability matrix, service matrix and initial service.
Result: This script generates a dataset of random messages sorted by

priority maintaining their original message number.
initialization;
if data = data sorted then

// In case of looking for sorted data

startSequence(data, ProbMatrix, ServiceMatrix);
sortMessages(data);

else
// In case of looking for unsorted data

startSequence(data, ProbMatrix, ServiceMatrix);

end
Function startSequence(data, A, services):

This function generates a message dataset using nextService() to fill the
priorities according to the sequence of services and their probabilities.;

return data;
End Function
Function nextService(dice, probVector):

This function throws a dice to select the nextService. If the dice value is
between the probabilities of two consecutive services then the next
service will be the one with the higher value. In other case the next
service will be the one with the closest probability.;

return serviceIndex;
End Function
Function sortMessages(data):

This function sorts the data by priority in ascending order.;
return dataSorted;

End Function
Algorithm 2: Sequence of Messages Script

55

Data: User setting preferences.
Result: This script shows a GUI to allow user interaction and send the

parameters to Tactics script.
initialization;
if Ecm button is clicked then

read the user election;
switch module selected do

case size do
if Seq or Per message is selected then

msgSizeGenerator()
else

// If the user clicks By default option

read GUI table
end

case priority do
if Low or Medium or High is selected then

MarkovMsgGeneratorProbMatrix()
else if Msg Behavior is selected then

MarkovMsgGeneratorInputPattern(int priority [])
else if Msg Prob. is selected then

ProbSequenceOfMsgGenerator(int desiredMsg, int prob [])
else // If the user clicks By default option

;
read GUI table

case time-window do
if Disitribution is selected then

show distributions;
RandonNumberGenerator()

else
// If the user clicks static option

Fix timeWindow;

end

end

else
wait until interaction

end

Algorithm 3: Obstacle Alert Script

56

Acronyms

A Adjustable parameter. 14

ACM Agile Communications Middleware. 13

API Application Programming Interface. 9, 13

ARL ARL Traffic Generation Tool. 14

C2 Command and Control. 2, 5, 7, 24

C3 Consultation, Command and Control. 17

C4ISR Command, Control, Communications, Computers, Intelligence, Surveil-
lance and Reconnaissance. 2

CIS Communication and Information Systems. 8

COI Community of Interest. 8, 25

COP Common Operational Pictures. 25

CPU Central Processing Unit. 25

CWIX Coalition Warrior Interoperability eXploration, eXperimentation, eXami-
nation, eXercise). 3

DDAM Dynamic Detect and Adapt Mechanism. 13

DDR Double Data Rate. 25

FCS Future Core Services. 3

FFT Friendly Force Tracking. 5

FIFO First in, First out. 10

FKIE Fraunhofer FKIE. 24

FTP File Transfer Protocol. 12

GB Gigabyte. 25

GUI Graphical User Interface. 6, 12–14, 24, 26–29, 33, 34, 44, 47

57

HDD Hard Disk Drive. 25

HF High Frequency. 14

HQ Headquarters. 16

HTTP Hypertext Transfer Protocol. 4

IBM International Business Machines Corporation. 12

ID Identification. 12

IP Internet Protocol. 4, 6, 14, 37, 39–41, 46, 47

IPI Internet-Packet-Interval. 6, 18, 37, 41, 42, 47

IT Information Technology. 11

JEMS JBoss Enterprise Middleware Stack. 11

JMS Java Message Service. 1, 9–12, 14, 15

JNDI Java Naming and Directory Interface. 12

LAN Local Area Network. 14

MANE Mobile Ad-hoc Network Emulator. 13

MANET Mobile Adhoc Network. 13, 14

MB Megabyte. 25

MGEN Multi-Generator. 14

MILCOM Military Communications. 13

MOM Message-Oriented Middleware. 9–13

MQ Message Queue. 12

NAS Network Awareness Service. 13

NATO North Atlantic Treaty Organization. 3, 4

NEC Network Enabled Capabilities. 4

NNEC FS Network Enabled Capability Feasibility Study. 4, 15

NRL Naval Research Laboratory. 14

OAS Obstacle Alert Service. 24, 25

OLSR Optimized Link State Routing. 14

P Predefined parameter. 14

58

PoE Power over Ethernet. 25

PROTEAN PROTocol Engineering Advanced Networking. 14

QAM QoS-aware Adaptive Middleware. 13

QoS Quality of Service. 2–6, 11, 22, 25, 36, 47

RAM Random Access Memory. 25

REST Representational State Transfer. 12

RF Radio Frequency. 25

RPM Revolutions Per Minute. 25

SatCom Satellite Communications. 2, 14, 16, 25

SDRAM Synchronous Dynamic Random-Access Memory. 25

SOA Service Oriented Architecture. 4, 10, 11, 15, 17

SOAP Simple Object Access Protocol. 4, 11, 12

SOAP-SEC SOAP Security. 11

TACTICS Tactical Service-Oriented Architecture. 3, 6, 16, 17, 22, 24, 25, 36

TAKE Tactical Ad-hoc networK Emulation. 14

TB Terabyte. 25

TCP Transmission Control Protocol. 12, 14

TEN Tactical Edge Networks. 14

TIB/RV Tibco Rendezvous. 13

ToE Time of Expire. 5

TSI Tactical Service-Oriented Infrastructure. 3, 16, 17, 24, 36–42, 47

UDDI Universal Description Discovery and Integration. 11

UDP User Datagram Protocol. 3, 14, 37, 39, 50

UHF Ultra High Frequency. 2, 16

UML Unified Modeling Language. 6, 29, 35

V Volt. 25

VHF Very High Frequency. 2, 6, 16, 23, 25, 34

VLAN Virtual LAN. 16, 25

59

VoIP Voice over IP. 14, 37, 47

W Watt. 25

WS Web Services. 10, 11

WSDL Web Services Description Language. 11

XML Extensible Markup Language. 4, 11

60

Bibliography

[1] R. R. F. Lopes, A. Viidanoja, M. Lhotellier, A. Diefenbach, N. Jansen, and
T. Ginzler, “A queuing mechanism for delivering QoS-constrained web services
in tactical networks,” in International Conference on Military Communications
and Information Systems (ICMCIS), pp. 1–8, May 2018.

[2] Rotermund, M., “Consultation, command and control board (c3b) c3 tax-
onomy baseline 2.0.” https://www.nato.int/nato_static_fl2014/assets/

pdf/pdf_2018_08/20180801_180801-ac322-d_2016_0017-c3t.pdf. [Online;
accessed 2019-02-20].

[3] IBM Developer, “Choosing among jca, jms, and web services for eai.”
https://www.ibm.com/developerworks/webservices/library/ws-jcajms/

index.html. [Online; accessed 2019-07-10].

[4] R. Fronteddu, A. Morelli, M. Mantovani, B. Ordway, L. Campioni, N. Suri,
and K. M. Marcus, “State estimation for tactical networks: Challenges and
approaches,” in MILCOM 2018 - 2018 IEEE Military Communications Con-
ference (MILCOM), pp. 1042–1048, Oct 2018.

[5] G. Elmasry, “A comparative review of commercial vs. tactical wireless net-
works,” IEEE Communications Magazine, vol. 48, pp. 54–59, October 2010.

[6] NATO, “What is nato?.” https://www.nato.int/nato-welcome/index.

html. [Online; accessed 2019-04-25].

[7] NATO, “Coalition warrior interoperability exercise.” https://www.act.nato.

int/cwix. [Online; accessed 2019-07-07].

[8] A. Diefenbach, T. Ginzler, S. McLaughlin, J. Sliwa, T. A. Lampe, and C. Prasse,
“TACTICS TSI architecture: A european reference architecture for tactical
SOA,” in International Conference on Military Communications and Informa-
tion Systems (ICMCIS), pp. 1–8, May 2016.

[9] A. Diefenbach, R. R. F. Lopes, T. A. Lampe, C. Prasse, J. Śliwa, R. Goniacz,
and A. Viidanoja, “Realizing overlay xcast in a tactical service infrastructure:
An approach based on a service-oriented architecture,” in 2018 International
Conference on Military Communications and Information Systems (ICMCIS),
pp. 1–8, May 2018.

[10] R. R. F. Lopes, P. H. Balaraju, and P. Sevenich, “Creating ever-changing
QoS-constrained dataflows in tactical networks: An exploratory study,” in In-
ternational Conference on Military Communications and Information Systems
(ICMCIS), (Budva, Montenegro), May 2019.

61

https://www.nato.int/nato_static_fl2014/assets/pdf/pdf_2018_08/20180801_180801-ac322-d_2016_0017-c3t.pdf
https://www.nato.int/nato_static_fl2014/assets/pdf/pdf_2018_08/20180801_180801-ac322-d_2016_0017-c3t.pdf
https://www.ibm.com/developerworks/webservices/library/ws-jcajms/index.html
https://www.ibm.com/developerworks/webservices/library/ws-jcajms/index.html
https://www.nato.int/nato-welcome/index.html
https://www.nato.int/nato-welcome/index.html
https://www.act.nato.int/cwix
https://www.act.nato.int/cwix

[11] R. R. F. Lopes, P. H. Balaraju, and P. Sevenich, “Creating and handling
ever-changing communication scenarios in tactical networks,” in 15th Interna-
tional Conference on the Design of Reliable Communication Networks (DRCN),
(Coimbra, Portugal), March 2019.

[12] R. R. F. Lopes, A. Viidanoja, M. Lhotellier, M. Mazurkiewicz, G. Melis,
A. Diefenbach, T. Ginzler, and N. Jansen, “Trade-off analysis of a service-
oriented and hierarchical queuing mechanism,” in IEEE 16th International
Symposium on Network Computing and Applications (NCA), pp. 1–4, Oct 2017.

[13] N. Jansen, D. Krämer, C. Barz, J. Niewiejska, and M. Spielmann, “Middle-
ware for coordinating a tactical router with SOA services,” in International
Conference on Military Communications and Information Systems (ICMCIS),
pp. 1–7, May 2015.

[14] M. Manso, J. M. A. Calero, C. Barz, T. H. Bloebaum, K. Chan, N. Jansen,
F. T. Johnsen, G. Markarian, P. P. Meiler, I. Owens, J. Sliwa, and Q. Wang,
“SOA and wireless mobile networks in the tactical domain: Results from exper-
iments,” in IEEE Military Communications Conference (MILCOM), pp. 593–
598, Oct 2015.

[15] R. R. F. Lopes, M. Nieminen, A. Viidanoja, and S. D. Wolthusen, “Reac-
tive/proactive connectivity management in a tactical service-oriented infras-
tructure,” in International Conference on Military Communications and Infor-
mation Systems (ICMCIS), pp. 1–8, May 2017.

[16] J. Nightingale, Q. Wang, J. M. A. Calero, I. Owens, F. T. Johnsen, T. H. Bloe-
baum, and M. Manso, “Reliable full motion video services in disadvantaged
tactical radio networks,” in International Conference on Military Communica-
tions and Information Systems (ICMCIS), pp. 1–9, May 2016.

[17] K. Wrona, S. Oudkerk, A. Armando, S. Ranise, R. Traverso, L. Ferrari, and
R. McEvoy, “Assisted content-based labelling and classification of documents,”
in International Conference on Military Communications and Information Sys-
tems (ICMCIS), pp. 1–7, May 2016.

[18] J. Sliwa and B. Jasiul, “Efficiency of dynamic content adaptation based on
semantic description of web service call context,” in MILCOM 2012 - 2012
IEEE Military Communications Conference, pp. 1–6, Oct 2012.

[19] K. Lund, E. Skjervold, F. Johnsen, T. Hafsøe, and A. Eggen, “Robust web
services in heterogeneous military networks,” IEEE Communications Magazine,
vol. 48, pp. 78–83, October 2010.

[20] Buckman. T., “NATO network enabled capability feasibility study execu-
tive summary : Version 2.0.” http://www.dodccrp.org/files/nnec_fs_

executive_summary_2.0_nu.pdf. [Online; accessed 2019-03-11].

[21] K. Lund, A. Eggen, D. Hadzic, T. Hafsoe, and F. T. Johnsen, “Using web
services to realize service oriented architecture in military communication net-
works,” IEEE Communications Magazine, vol. 45, pp. 47–53, October 2007.

62

http://www.dodccrp.org/files/nnec_fs_executive_summary_2.0_nu.pdf
http://www.dodccrp.org/files/nnec_fs_executive_summary_2.0_nu.pdf

[22] G. L. Eric Newcomer, Understanding SOA with Web Services. Independent
technology guides, Addison-Wesley, 2005.

[23] R. R. F. Lopes, P. H. Balaraju, A. T. Silva, P. H. Rettore, and P. Sevenich,
“Experiments with a queuing mechanism over ever-changing datarates in a VHF
network,” in IEEE Military Communications Conference (MILCOM), (Norfolk
VA, USA), November 2019.

[24] J. R. A. Marius S. Vassiliou, David S. Alberts, C2 Re-envisioned: The Future
of the Enterprise. CRC Press, 1 ed., 2014.

[25] A. Ghosh, S. Li, C. J. Chiang, R. Chadha, K. Moeltner, S. Ali, Y. Kumar,
and R. Bauer, “Qos-aware adaptive middleware (qam) for tactical manet appli-
cations,” in MILITARY COMMUNICATIONS CONFERENCE (MILCOM),
pp. 178–183, Oct 2010.

[26] A. Poylisher, F. Sultan, A. Ghosh, S. Li, C. J. Chiang, R. Chadha, K. Moeltner,
and K. Jakubowski, “Qam: A comprehensive qos-aware middleware suite for
tactical communications,” in 2011 - MILCOM 2011 Military Communications
Conference, pp. 1586–1591, Nov 2011.

[27] RedHat, “¿qué es middleware?.” https://www.redhat.com/es/topics/

middleware/what-is-middleware. [Online; accessed 2019-07-10].

[28] D. Oberle, A. Eberhart, S. Staab, and R. Volz, “Developing and managing soft-
ware components in an ontology-based application server,” in Proceedings of the
5th ACM/IFIP/USENIX International Conference on Middleware, Middleware
’04, (Berlin, Heidelberg), pp. 459–477, Springer-Verlag, 2004.

[29] A. Grant, M. Antonioletti, A. C. Hume, A. Krause, B. Dobrzelecki, M. J.
Jackson, M. Parsons, M. P. Atkinson, and E. Theocharopoulos, “Ogsa-dai:
Middleware for data integration: Selected applications,” in 2008 IEEE Fourth
International Conference on eScience, pp. 343–343, Dec 2008.

[30] B. Dobrzelecki, A. Krause, A. C. Hume, A. Grant, M. Antonioletti, T. Y.
Alemu, M. Atkinson, M. Jackson, and E. Theocharopoulos, “Integrating dis-
tributed data sources with ogsa-dai dqp and views,” Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 368, no. 1926, pp. 4133–4145, 2010.

[31] S. Vinoski, “Where is middleware,” IEEE Internet Computing, vol. 6, pp. 83–
85, March 2002.

[32] P. A. Bernstein, “Middleware: A model for distributed system services,” Com-
mun. ACM, vol. 39, pp. 86–98, 1996.

[33] M. X. Y. T. M. Q. S. L. W. C. Yoshikawa, M., Database Systems for Advanced
Applications. Elsevier, 2010.

[34] JBoss, “Chapter 7. generating performance benchmark results.”
https://docs.jboss.org/jbossmessaging/docs/guide-1.0.1.SP5/html/

performance.html. [Online; accessed 2019-07-19].

63

https://www.redhat.com/es/topics/middleware/what-is-middleware
https://www.redhat.com/es/topics/middleware/what-is-middleware
https://docs.jboss.org/jbossmessaging/docs/guide-1.0.1.SP5/html/performance.html
https://docs.jboss.org/jbossmessaging/docs/guide-1.0.1.SP5/html/performance.html

[35] Apache, “Jmeter performance test.” https://activemq.apache.org/

jmeter-performance-tests.html. [Online; accessed 2019-07-19].

[36] IBM, “Ibm mq c performance harness.” https://github.com/

ibm-messaging/mq-cph/blob/master/cph.pdf. [Online; accessed 2019-
07-19].

[37] JBoss, “Chapter 2. introduction.” https://docs.jboss.org/

jbossmessaging/docs/guide-1.0.1.SP5/html/introduction.html. [On-
line; accessed 2019-07-19].

[38] Apache, “Apache jmeter.” http://jmeter.apache.org/. [Online; accessed
2019-07-19].

[39] IBM Community, “Mqdev blog.” https://www.ibm.com/developerworks/

community/blogs/messaging/entry/MQ_C_Performance_Harness_

Released_on_GitHub?lang=en. [Online; accessed 2019-07-19].

[40] K. Sachs, S. Appel, S. Kounev, and A. Buchmann, “Benchmarking
publish/subscribe-based messaging systems,” vol. 6193, pp. 203–214, 04 2010.

[41] The linux foundation, “The openmessaging benchmark framework.” http://

openmessaging.cloud/docs/benchmarks/. [Online; accessed 2019-07-20].

[42] Ta Chen, S. Eswaran, M. A. Kaplan, S. Samtani, D. Shur, J. Sucec, and
L. Wong, “Enhancing application performance with network awareness in tacti-
cal networks,” in 2011 - MILCOM 2011 Military Communications Conference,
pp. 1158–1163, Nov 2011.

[43] P. Maheshwari and M. Pang, “Benchmarking message-oriented middleware:
Tib/rv versus sonicmq,” Concurrency - Practice and Experience, vol. 17,
pp. 1507–1526, 10 2005.

[44] R. Fronteddu, A. Morelli, M. Tortonesi, N. Suri, C. Stefanelli, R. Lenzi, and
E. Casini, “Ddam: Dynamic network condition detection and communication
adaptation in tactical edge networks,” in MILCOM 2016 - 2016 IEEE Military
Communications Conference, pp. 970–975, Nov 2016.

[45] S. Ruffieux, C. Gisler, J. Wagen, F. Buntschu, and G. Bovet, “Take — tacti-
cal ad-hoc network emulation,” in 2018 International Conference on Military
Communications and Information Systems (ICMCIS), pp. 1–8, May 2018.

[46] US Army Research Laboratory., “Traffic generation tool..” https://www.arl.

army.mil/www/default.cfm?page=2490. [Online; accessed 2019-07-26].

[47] US Naval Research Laboratory., “Multi-generator (mgen)..” https://www.

nrl.navy.mil/itd/ncs/products/mgen. [Online; accessed 2019-07-26].

[48] C. Barz, C. Fuchs, J. Kirchhoff, J. Niewiejska, and H. Rogge, “OLSRv2 for
community networks: Using directional airtime metric with external radios,”
Computer Networks, vol. 93, Part 2, pp. 324 – 341, 2015.

64

https://activemq.apache.org/jmeter-performance-tests.html
https://activemq.apache.org/jmeter-performance-tests.html
https://github.com/ibm-messaging/mq-cph/blob/master/cph.pdf
https://github.com/ibm-messaging/mq-cph/blob/master/cph.pdf
https://docs.jboss.org/jbossmessaging/docs/guide-1.0.1.SP5/html/introduction.html
https://docs.jboss.org/jbossmessaging/docs/guide-1.0.1.SP5/html/introduction.html
http://jmeter.apache.org/
https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_C_Performance_Harness_Released_on_GitHub?lang=en
https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_C_Performance_Harness_Released_on_GitHub?lang=en
https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_C_Performance_Harness_Released_on_GitHub?lang=en
http://openmessaging.cloud/docs/benchmarks/
http://openmessaging.cloud/docs/benchmarks/
https://www.arl.army.mil/www/default.cfm?page=2490
https://www.arl.army.mil/www/default.cfm?page=2490
https://www.nrl.navy.mil/itd/ncs/products/mgen
https://www.nrl.navy.mil/itd/ncs/products/mgen

[49] C. Barz, C. Fuchs, J. Kirchhoff, J. Niewiejska, and H. Rogge, “Extending olsrv2
for tactical applications,” in International Conference on Military Communi-
cations and Information Systems (ICMCIS), pp. 1–8, May 2016.

[50] Thales Group, “PR4G f@stnet product family.” https://www.thalesgroup.

com/en/worldwide/defence/pr4g-fstnet-product-family. [Online; ac-
cessed 2019-04-08].

[51] Dell, “Inspiron 15 3000 laptop.” https://www.dell.com/ve/p/

inspiron-15-3558-laptop/pd. [Online; accessed 2019-04-08].

[52] Amazon, “Bar bones firewall pc mi19 n.” https://www.amazon.de/

Barebones-Firewall-Mi19N-Intel-Celeron/dp/B01MSW5RXS. [Online; ac-
cessed 2019-04-08].

[53] Baltic Networks Inc., “Tough switch poe: Datasheet.” https://www.

balticnetworks.com/docs/TOUGHSwitch_PoE_DS.pdf. [Online; accessed
2019-04-08].

[54] D. Bertsekas and J. Tsitsiklis, Introduction to Probability. Athena Scientific
books, Athena Scientific, 2002.

[55] S. M. Ross, Introduction to Probability Models - 10th ed. Elsevier, 2010.

[56] The R Foundation., “The r project for statistical computing..” https://www.

r-project.org/. [Online; accessed 2019-08-06].

[57] Red Hat Ansible., “Ansible is simple it automation..” https://www.ansible.

com/. [Online; accessed 2019-08-06].

[58] US Naval Research Laboratory., “Mgen user’s and reference guide version 5.0.”
https://downloads.pf.itd.nrl.navy.mil/docs/mgen/mgen.html. [Online;
accessed 2019-08-16].

[59] GZIP, “Gzip home.” https://www.gzip.org/. [Online; accessed 2019-08-14].

[60] Diana Olick - CNBC, “An army of one carries a high price.”
http://www.nbcnews.com/id/3072945/t/army-one-carries-high-price/

.XT8Xv-jHxPY. [Online; accessed 2019-08-16].

65

https://www.thalesgroup.com/en/worldwide/defence/pr4g-fstnet-product-family
https://www.thalesgroup.com/en/worldwide/defence/pr4g-fstnet-product-family
https://www.dell.com/ve/p/inspiron-15-3558-laptop/pd
https://www.dell.com/ve/p/inspiron-15-3558-laptop/pd
https://www.amazon.de/Barebones-Firewall-Mi19N-Intel-Celeron/dp/B01MSW5RXS
https://www.amazon.de/Barebones-Firewall-Mi19N-Intel-Celeron/dp/B01MSW5RXS
https://www.balticnetworks.com/docs/TOUGHSwitch_PoE_DS.pdf
https://www.balticnetworks.com/docs/TOUGHSwitch_PoE_DS.pdf
https://www.r-project.org/
https://www.r-project.org/
https://www.ansible.com/
https://www.ansible.com/
https://downloads.pf.itd.nrl.navy.mil/docs/mgen/mgen.html
https://www.gzip.org/
http://www.nbcnews.com/id/3072945/t/army-one-carries-high-price/.XT8Xv-jHxPY
http://www.nbcnews.com/id/3072945/t/army-one-carries-high-price/.XT8Xv-jHxPY

	Introduction
	Motivation
	Goals
	Specific Goals

	Contributions
	Outline

	Literature Review
	Fundamental concepts
	Command and Control (C2)
	Consultation, Command and Control (C3) Taxonomy
	Middleware
	Java Message Service vs Web service

	Message Benchmarks
	Final remarks

	Tactical Middleware
	Testbed in tactical networks
	Architecture of TACTICS
	Ever-changing datarates
	Ever-changing QoS-constrained dataflows
	Final remarks

	Creating QoS-Constrained Dataflows
	Methodology
	Resources

	Publish/Subscribe messaging
	Message size
	Message priority
	Message time-window

	The Message Benchmark Application
	Final remarks

	Experiments and Results
	Experiments definition
	Experimental Results
	Simulations: creating patterns of QoS-constrained dataflows

	Final remarks

	Conclusion
	Ethical, economic, social and environmental aspects
	Introduction
	Description of relevant impacts related to the project
	Detailed analysis of the main impacts
	Conclusions

	Economical budget
	Cost of materials
	Professional fees
	Total costs

	Scripts
	Acronyms

